Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The functional role of the supraspinatus and infraspinatus muscle subregions during forward flexion: a shear wave elastography study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Knowledge of the morphological and functional differences in the anatomic subregions of the supraspinatus (SSP) and infraspinatus (ISP) muscles during forward flexion will provide useful information in the management of shoulder joint disorders. The purpose of this study was to investigate whether the SSP and ISP muscle subregions exhibit independent roles during forward flexion of the shoulder joint.

          Methods

          Eight healthy male volunteers without any restriction in their shoulder joints were recruited for this study. Participants were instructed to sit on a chair with their back against the backrest. Shear modulus (kPa) was measured as a surrogate for muscle stiffness using shear wave elastography on the SSP and ISP muscle subregions. Active measurements of the nondominant arm were obtained during isometric contraction at a neutral position and every 15° intervals from 30° to 150° during forward flexion. Friedman test and Dunn's post hoc test were used to evaluate differences in measurement outcomes among angles during forward flexion in each muscle subregion.

          Results

          Active stiffness outcomes of the anterior-middle subregion of the SSP muscle during forward flexion increased from 30° up to 45°, reaching a value of 182.4 ± 32.1 kPa ( P < .001). Stiffness of the anterior-superficial subregion of the SSP muscle was highest at 30° (125.0 ± 20.6 kPa; P < .019) and linearly decreased up to 105° with increasing shoulder angle position. Stiffness of the superior, middle, and inferior subregions of ISP muscle presented a mountain-shaped trend, with peaks of 99.9 ± 23.5 kPa at 90° ( P < .013), 144.2 ± 11.2 kPa at 90° ( P < .013), and 122.9 ± 27.9 kPa at 105° ( P < .007), respectively. Finally, the stiffness outcomes of the pectoralis major and anterior region of the deltoid muscles showed a mountain-shaped trend with peaks of 89.4 ± 23.5 kPa at 60° ( P < .007) and 176.7 ± 22.9 kPa at 90° ( P < .026), respectively.

          Conclusions

          The SSP and ISP muscle subregions play a significant role during active forward flexion motion. While closely overlapped, the activity of the muscle subregions changed during the forward flexion motion range, starting with an active anterior-superficial subregion of the SSP muscle at the initial range of motion and an active inferior subregion of the ISP muscle toward midrange of motion. The SSP and ISP subregions did not demonstrate independent functional behavior during forward flexion.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences

          G*Power (Erdfelder, Faul, & Buchner, 1996) was designed as a general stand-alone power analysis program for statistical tests commonly used in social and behavioral research. G*Power 3 is a major extension of, and improvement over, the previous versions. It runs on widely used computer platforms (i.e., Windows XP, Windows Vista, and Mac OS X 10.4) and covers many different statistical tests of the t, F, and chi2 test families. In addition, it includes power analyses for z tests and some exact tests. G*Power 3 provides improved effect size calculators and graphic options, supports both distribution-based and design-based input modes, and offers all types of power analyses in which users might be interested. Like its predecessors, G*Power 3 is free.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research.

            Intraclass correlation coefficient (ICC) is a widely used reliability index in test-retest, intrarater, and interrater reliability analyses. This article introduces the basic concept of ICC in the content of reliability analysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Muscle activity and coordination in the normal shoulder. An electromyographic study.

              Muscle activity and coordination in ten shoulders were studied in five healthy subjects using electromyography (EMG) recorded during standardized loaded movements, i.e., flexion, extension, abduction, external rotation, and internal rotation at 0 degrees, 45 degrees, and 90 degrees of abduction. Bipolar surface and intramuscular fine-wire electrodes were used, and the EMG signal was low-pass filtered, full-wave rectified, and time-averaged. Activity from the subscapularis, supraspinatus, infraspinatus, pectoralis major (sternoclavicular part), the anterior, middle, and posterior parts of the deltoid, and the latissimus dorsi was recorded in parallel. In order to allow a comparison of the activity in a subject's different muscles and the activity in specific muscles between different individuals, the EMG was normalized. Muscle activity occurred simultaneously in muscles producing the movement and in antagonistic muscles. Coordination due to muscle contractions plays a significant role in stabilizing the shoulder joint. The infraspinatus, subscapularis, and latissimus dorsi acted as stabilizers during flexion; the subscapularis acted as a stabilizer during external rotation and with the supraspinatus during extension.
                Bookmark

                Author and article information

                Contributors
                Journal
                JSES Int
                JSES Int
                JSES International
                Elsevier
                2666-6383
                27 June 2022
                September 2022
                27 June 2022
                : 6
                : 5
                : 849-854
                Affiliations
                [a ]Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
                [b ]Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
                Author notes
                []Corresponding author: Kyosuke Hoshikawa, PT, MS, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata 990-2212, Japan. d.kyosuke.hoshikawa@ 123456yachts.ac.jp
                Article
                S2666-6383(22)00129-3
                10.1016/j.jseint.2022.05.011
                9446250
                5653803b-89ef-4481-828d-add75b712fdb
                © 2022 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Shoulder
                Miscellaneous

                supraspinatus muscle,infraspinatus muscle,muscle subregions,forward flexion,shear wave elastography,muscle stiffness

                Comments

                Comment on this article