0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Obesity, free fatty acids, and insulin resistance :

      Current Opinion in Endocrinology & Diabetes
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Banting lecture 1988. Role of insulin resistance in human disease.

          G M Reaven (1988)
          Resistance to insulin-stimulated glucose uptake is present in the majority of patients with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) and in approximately 25% of nonobese individuals with normal oral glucose tolerance. In these conditions, deterioration of glucose tolerance can only be prevented if the beta-cell is able to increase its insulin secretory response and maintain a state of chronic hyperinsulinemia. When this goal cannot be achieved, gross decompensation of glucose homeostasis occurs. The relationship between insulin resistance, plasma insulin level, and glucose intolerance is mediated to a significant degree by changes in ambient plasma free-fatty acid (FFA) concentration. Patients with NIDDM are also resistant to insulin suppression of plasma FFA concentration, but plasma FFA concentrations can be reduced by relatively small increments in insulin concentration. Consequently, elevations of circulating plasma FFA concentration can be prevented if large amounts of insulin can be secreted. If hyperinsulinemia cannot be maintained, plasma FFA concentration will not be suppressed normally, and the resulting increase in plasma FFA concentration will lead to increased hepatic glucose production. Because these events take place in individuals who are quite resistant to insulin-stimulated glucose uptake, it is apparent that even small increases in hepatic glucose production are likely to lead to significant fasting hyperglycemia under these conditions. Although hyperinsulinemia may prevent frank decompensation of glucose homeostasis in insulin-resistant individuals, this compensatory response of the endocrine pancreas is not without its price. Patients with hypertension, treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted. Hypertension can also be produced in normal rats when they are fed a fructose-enriched diet, an intervention that also leads to the development of insulin resistance and hyperinsulinemia. The development of hypertension in normal rats by an experimental manipulation known to induce insulin resistance and hyperinsulinemia provides further support for the view that the relationship between the three variables may be a causal one.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity.

              To examine the mechanism by which free fatty acids (FFA) induce insulin resistance in human skeletal muscle, glycogen, glucose-6-phosphate, and intracellular glucose concentrations were measured using carbon-13 and phosphorous-31 nuclear magnetic resonance spectroscopy in seven healthy subjects before and after a hyperinsulinemic-euglycemic clamp following a five-hour infusion of either lipid/heparin or glycerol/heparin. IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity was also measured in muscle biopsy samples obtained from seven additional subjects before and after an identical protocol. Rates of insulin stimulated whole-body glucose uptake. Glucose oxidation and muscle glycogen synthesis were 50%-60% lower following the lipid infusion compared with the glycerol infusion and were associated with a approximately 90% decrease in the increment in intramuscular glucose-6-phosphate concentration, implying diminished glucose transport or phosphorylation activity. To distinguish between these two possibilities, intracellular glucose concentration was measured and found to be significantly lower in the lipid infusion studies, implying that glucose transport is the rate-controlling step. Insulin stimulation, during the glycerol infusion, resulted in a fourfold increase in PI 3-kinase activity over basal that was abolished during the lipid infusion. Taken together, these data suggest that increased concentrations of plasma FFA induce insulin resistance in humans through inhibition of glucose transport activity; this may be a consequence of decreased IRS-1-associated PI 3-kinase activity.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Endocrinology & Diabetes
                Current Opinion in Endocrinology & Diabetes
                Ovid Technologies (Wolters Kluwer Health)
                1068-3097
                2001
                October 2001
                : 8
                : 5
                : 235-239
                Article
                10.1097/00060793-200110000-00002
                56903586-c0de-4331-9a2d-8721f0690ca3
                © 2001
                History

                Comments

                Comment on this article