65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure of a spliceosome remodelled for exon ligation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spliceosome excises introns from pre-mRNAs in two sequential transesterifications – branching and exon ligation 1 – catalysed at a single catalytic metal site in U6 snRNA 2, 3 . The recent structures of the spliceosomal C complex 4, 5 with the cleaved 5’-exon and lariat—3’-exon bound to the catalytic centre revealed that branching-specific factors such as Cwc25 lock the branch helix into position for nucleophilic attack of the branch adenosine at the 5’-splice site. Furthermore, the ATPase Prp16 is positioned to bind and translocate the intron downstream of the branch point to destabilize branching-specific factors and release the branch helix from the active site 4 . Here we present the 3.8Å cryo-EM structure of a Saccharomyces cerevisiae spliceosome stalled after Prp16-mediated remodelling but prior to exon ligation. While the U6 snRNA catalytic core remains firmly held in the active site cavity of Prp8 by proteins common to both steps, the branch helix has rotated by 75 degrees compared to complex C and is stabilized into a new position by Prp17, Cef1, and the reoriented Prp8 RNaseH domain. This rotation of the branch helix removes the branch adenosine from the catalytic core, creates a space for 3’-exon docking, and restructures the pairing of the 5’-splice site with the U6 snRNA ACAGAGA region. Slu7 and Prp18, which promote exon ligation, bind together to the Prp8 RNaseH domain. The ATPase Prp22, bound to Prp8 in place of Prp16, could interact with the 3’-exon, suggesting a possible basis for mRNA release after exon ligation 6, 7 . Together with the C complex structure 4 , our new C* complex structure reveals the two major conformations of the spliceosome during the catalytic stages of splicing.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          A general two-metal-ion mechanism for catalytic RNA.

          A mechanism is proposed for the RNA-catalyzed reactions involved in RNA splicing and RNase P hydrolysis of precursor tRNA. The mechanism postulates that chemical catalysis is facilitated by two divalent metal ions 3.9 A apart, as in phosphoryl transfer reactions catalyzed by protein enzymes, such as the 3',5'-exonuclease of Escherichia coli DNA polymerase I. One metal ion activates the attacking water or sugar hydroxyl, while the other coordinates and stabilizes the oxyanion leaving group. Both ions act as Lewis acids and stabilize the expected pentacovalent transition state. The symmetry of a two-metal-ion catalytic site fits well with the known reaction pathway of group I self-splicing introns and can also be reconciled with emerging data on group II self-splicing introns, the spliceosome, and RNase P. The role of the RNA is to position the two catalytic metal ions and properly orient the substrates via three specific binding sites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Automated structure solution with the PHENIX suite.

            Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution, and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution, and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template- and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix. refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of a yeast spliceosome at 3.6-angstrom resolution.

              Splicing of precursor messenger RNA (pre-mRNA) in yeast is executed by the spliceosome, which consists of five small nuclear ribonucleoproteins (snRNPs), NTC (nineteen complex), NTC-related proteins (NTR), and a number of associated enzymes and cofactors. Here, we report the three-dimensional structure of a Schizosaccharomyces pombe spliceosome at 3.6-angstrom resolution, revealed by means of single-particle cryogenic electron microscopy. This spliceosome contains U2 and U5 snRNPs, NTC, NTR, U6 small nuclear RNA, and an RNA intron lariat. The atomic model includes 10,574 amino acids from 37 proteins and four RNA molecules, with a combined molecular mass of approximately 1.3 megadaltons. Spp42 (Prp8 in Saccharomyces cerevisiae), the key protein component of the U5 snRNP, forms a central scaffold and anchors the catalytic center. Both the morphology and the placement of protein components appear to have evolved to facilitate the dynamic process of pre-mRNA splicing. Our near-atomic-resolution structure of a central spliceosome provides a molecular framework for mechanistic understanding of pre-mRNA splicing.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                11 January 2017
                11 January 2017
                16 February 2017
                11 July 2017
                : 542
                : 7641
                : 377-380
                Affiliations
                MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
                Author notes
                Correspondence and requests for materials should be addressed to S.M.F. ( sfica@ 123456mrc-lmb.cam.ac.uk ) and K.N. ( kn@ 123456mrc-lmb.cam.ac.uk )
                [#]

                Present address: EMBL GRENOBLE, 71 avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France

                Article
                EMS70998
                10.1038/nature21078
                5321579
                28076345
                56f938ca-fd2b-4991-8131-97c00f09b829

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article