12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serotonin receptors in depression: from A to B

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of serotonin in major depressive disorder (MDD) is the focus of accumulating clinical and preclinical research. The results of these studies reflect the complexity of serotonin signaling through many receptors, in a large number of brain regions, and throughout the lifespan. The role of the serotonin transporter in MDD has been highlighted in gene by environment association studies as well as its role as a critical player in the mechanism of the most effective antidepressant treatments – selective serotonin reuptake inhibitors. While the majority of the 15 known receptors for serotonin have been implicated in depression or depressive-like behavior, the serotonin 1A (5-HT 1A) and 1B (5-HT 1B) receptors are among the most studied. Human brain imaging and genetic studies point to the involvement of 5-HT 1A and 5-HT 1B receptors in MDD and the response to antidepressant treatment. In rodents, the availability of tissue-specific and inducible knockout mouse lines has made possible the identification of the involvement of 5-HT 1A and 5-HT 1B receptors throughout development and in a cell-type specific manner. This, and other preclinical pharmacology work, shows that autoreceptor and heteroreceptor populations of these receptors have divergent roles in modulating depression-related behavior as well as responses to antidepressants and also have different functions during early postnatal development compared to during adulthood.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          Social reward requires coordinated activity of accumbens oxytocin and 5HT

          Social behaviors in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviors, the neural mechanisms by which social reward is encoded by the brain are largely unknown. Here we demonstrate that in mice oxytocin (OT) acts as a social reinforcement signal within the nucleus accumbens (NAc) core, where it elicits a presynaptically expressed long-term depression of excitatory synaptic transmission in medium spiny neurons. Although the NAc receives OT receptor-containing inputs from several brain regions, genetic deletion of these receptors specifically from dorsal raphe nucleus, which provides serotonergic (5-HT) innervation to the NAc, abolishes the reinforcing properties of social interaction. Furthermore, OT-induced synaptic plasticity requires activation of NAc 5-HT1b receptors, the blockade of which prevents social reward. These results demonstrate that the rewarding properties of social interaction in mice require the coordinated activity of OT and 5-HT in the NAc, a mechanistic insight with implications for understanding the pathogenesis of social dysfunction in neuropsychiatric disorders such as autism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The developmental role of serotonin: news from mouse molecular genetics.

            New genetic models that target the serotonin system show that transient alterations in serotonin homeostasis cause permanent changes to adult behaviour and modify the fine wiring of brain connections. These findings have revived a long-standing interest in the developmental role of serotonin. Molecular genetic approaches are now showing us that different serotonin receptors, acting at different developmental stages, modulate different developmental processes such as neurogenesis, apoptosis, axon branching and dendritogenesis. Our understanding of the specification of the serotonergic phenotype is improving. In addition, studies have revealed that serotonergic traits are dissociable, as there are populations of neurons that contain serotonin but do not synthesize it.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice.

              Reduced serotonin transporter (5-HTT) expression is associated with abnormal affective and anxiety-like symptoms in humans and rodents, but the mechanism of this effect is unknown. Transient inhibition of 5-HTT during early development with fluoxetine, a commonly used serotonin selective reuptake inhibitor, produced abnormal emotional behaviors in adult mice. This effect mimicked the behavioral phenotype of mice genetically deficient in 5-HTT expression. These findings indicate a critical role of serotonin in the maturation of brain systems that modulate emotional function in the adult and suggest a developmental mechanism to explain how low-expressing 5-HTT promoter alleles increase vulnerability to psychiatric disorders.
                Bookmark

                Author and article information

                Journal
                F1000Res
                F1000Res
                F1000Research
                F1000Research
                F1000Research (London, UK )
                2046-1402
                9 February 2017
                2017
                : 6
                : 123
                Affiliations
                [1 ]Division of Integrative Neuroscience, New York State Psychiatric Institute, and Department of Psychiatry, Columbia University, NY, USA
                [2 ]Departments of Neuroscience and Pharmacology, Columbia University, NY, USA
                Author notes

                Competing interests: The authors declare that they have no competing interests.

                Article
                10.12688/f1000research.9736.1
                5302148
                28232871
                57388132-0b9d-478a-a67a-38221b36b1c6
                Copyright: © 2017 Nautiyal KM and Hen R

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 January 2017
                Funding
                Funded by: Hope for Depression Research Foundation
                Funded by: National Institutes of Health
                Award ID: NIH K99
                Award ID: NIH K99
                Funded by: NARSAD
                Award ID: Young Investigator Award
                Support for René Hen was provided by Hope for Depression Research Foundation (RGA 13-003), NIH R37MH068542, and R01MH083862. Funding for Katherine Nautiyal was provided by NIH K99 MH106731 and a NARSAD Young Investigator Award.
                The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Review
                Articles
                Behavioral Neuroscience
                Neurodevelopment
                Neuronal Signaling Mechanisms
                Neuropharmacology & Psychopharmacology
                Substance Abuse

                serotonin,mdd,major depressive disorder,serotonin receptor,5-ht1a,5-ht1b,5-htt,selective serotonin reuptake inhibitors,antidepressant

                Comments

                Comment on this article