26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson's disease using an MRI-guided and MRI-verified approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Subthalamic nucleus (STN) deep brain stimulation (DBS) represents a well-established treatment for patients with advanced Parkinson's disease (PD) insufficiently controlled with medical therapies. This study presents the long-term outcomes of patients with PD treated with STN-DBS using an MRI-guided/MRI-verified approach without microelectrode recording.

          Methods

          A cohort of 41 patients who underwent STN-DBS were followed for a minimum period of 5 years, with a subgroup of 12 patients being followed for 8–11 years. Motor status was evaluated using part III of the Unified Parkinson's Disease Rating Scale (UPDRS-III), in on- and off-medication/on-stimulation conditions. Preoperative and postoperative assessments further included activities of daily living (UPDRS-II), motor complications (UPDRS-IV), neuropsychological and speech assessments, as well as evaluation of quality of life. Active contacts localisation was calculated and compared with clinical outcomes.

          Results

          STN-DBS significantly improved the off-medication UPDRS-III scores, compared with baseline. However, UPDRS scores increased over time after DBS. Dyskinesias, motor fluctuations and demands in dopaminergic medication remained significantly reduced in the long term. Conversely, UPDRS-III on-medication scores deteriorated at 5 and 8 years, mostly driven by axial and bradykinesia subscores. Quality of life, as well as depression and anxiety scores, did not significantly change at long-term follow-up compared with baseline. In our series, severe cognitive decline was observed in 17.1% and 16.7% of the patients at 5 and 8 years respectively.

          Conclusions

          Our data confirm that STN-DBS, using an MRI-guided/MRI-verified technique, remains an effective treatment for motor ‘off’ symptoms of PD in the long term with low morbidity.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of cognitive dysfunction in an incident Parkinson's disease cohort.

          We have previously performed detailed clinical and neuropsychological assessments in a community-based cohort of patients with newly diagnosed parkinsonism, and through analysis of a subcohort with idiopathic Parkinson's disease (PD), we have demonstrated that cognitive dysfunction occurs even at the time of PD diagnosis and is heterogeneous. Longitudinal follow-up of the cohort has now been performed to examine the evolution of cognitive dysfunction within the early years of the disease. One hundred and eighty (79%) eligible patients from the original cohort with parkinsonism were available for re-assessment at between 3 and 5 years from their initial baseline assessments. PD diagnoses were re-validated with repeated application of the UKPDS Brain Bank criteria in order to maximize sensitivity and specificity, following which a diagnosis of idiopathic PD was confirmed in 126 patients. Thirteen out of 126 (10%) had developed dementia at a mean (SD) of 3.5 (0.7) years from diagnosis, corresponding to an annual dementia incidence of 30.0 (16.4-52.9) per 1000 person-years. A further 57% of PD patients showed evidence of cognitive impairment, with frontostriatal deficits being most common amongst the non-demented group. However, the most important clinical predictors of global cognitive decline following correction for age were neuropsychological tasks with a more posterior cortical basis, including semantic fluency and ability to copy an intersecting pentagons figure, as well as a non-tremor dominant motor phenotype at the baseline assessment. This work clarifies the profile of cognitive dysfunction in early PD and demonstrates that the dementing process in this illness is heralded by both postural and gait dysfunction and cognitive deficits with a posterior cortical basis, reflecting probable non-dopaminergic cortical Lewy body pathology. Furthermore, given that these predictors of dementia are readily measurable within just a few minutes in a clinical setting, our work may ultimately have practical implications in terms of guiding prognosis in individual patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation.

            In monkeys rendered parkinsonian, lesions and electrical stimulation of the subthalamic nucleus reduce all major motor disturbances. The effect of electrical stimulation of the subthalamic nucleus was assessed in three patients with disabling akinetic-rigid Parkinson's disease and severe motor fluctuations. Quadripolar electrodes connected to a pulse generator were implanted in the subthalamic nuclei on both sides. Patients were evaluated with the unified Parkinson's disease rating scale and timed motor tests. 3 months after surgery, activities of daily living scores had improved by 58-88% and motor scores by 42-84%. This improvement was maintained for up to 8 months in the first patient operated upon. One patient was confused for 2 weeks after surgery, and another developed neuropsychological impairment related to a thalamic infarction which improved over 3 months. In one patient, stimulation could induce ballism that was stopped by reduction of stimulation. This is the first demonstration in human beings of the part played by the subthalamic nuclei in the pathophysiology of Parkinson's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Motor and cognitive outcome in patients with Parkinson's disease 8 years after subthalamic implants.

              Deep brain stimulation of the subthalamic nucleus represents the most important innovation for treatment of advanced Parkinson's disease. Prospective studies have shown that although the beneficial effects of this procedure are maintained at 5 years, axial motor features and cognitive decline may occur in the long term after the implants. In order to address some unsolved questions raised by previous studies, we evaluated a series of 20 consecutive patients who received continuous stimulation for 8 years. The overall motor improvement reported at 5 years (55.5% at Unified Parkinson's Disease Rating Scale-motor part, P < 0.001 compared with baseline) was only partly retained 3 years later (39%, P < 0.001, compared with baseline; -16.5%, P < 0.01, compared with 5 years), with differential effects on motor features: speech did not improve and postural stability worsened (P < 0.05). The preoperative levodopa equivalent daily dose was reduced by 58.2% at 5 years and by 60.3% at 8 years. In spite of subtle worsening of motor features, a dramatic impairment in functional state (-56.6% at Unified Parkinson's Disease Rating Scale-Activities of Daily Living, P < 0.01) emerged after the fifth year of stimulation. The present study did not reveal a predictive value of preoperative levodopa response, whereas few single features at baseline (such as gait and postural stability motor scores and the preoperative levodopa equivalent daily dose) could predict long-term motor outcome. A decline in verbal fluency (slightly more pronounced than after 5 years) was detected after 8 years. A significant but slight decline in tasks of abstract reasoning, episodic memory and executive function was also found. One patient had developed dementia at 5 years with further progression at 8 years. Executive dysfunction correlated significantly with postural stability, suggesting interplay between axial motor deterioration and cognition. Eight years after surgery, no significant change was observed on scales assessing depression or anxiety when compared with baseline. At 8 years, there was no significant increase of side-effects when compared with 5-year follow-up. In conclusion, deep brain stimulation of the subthalamic nucleus is a safe procedure with regard to cognitive and behavioural morbidity over long-term follow-up. However, the global benefit partly decreases later in the course of the disease, due to progression of Parkinson's disease and the appearance of medication- and stimulation-resistant symptoms.
                Bookmark

                Author and article information

                Journal
                J Neurol Neurosurg Psychiatry
                J. Neurol. Neurosurg. Psychiatr
                jnnp
                jnnp
                Journal of Neurology, Neurosurgery, and Psychiatry
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                0022-3050
                1468-330X
                December 2014
                30 April 2014
                : 85
                : 12
                : 1419-1425
                Affiliations
                Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology , London, UK
                Author notes
                [Correspondence to ] Professor Patricia Limousin, National Hospital for Neurology and Neurosurgery, Box 146, Queen Square, London WC1N 3BG, UK; p.limousin@ 123456ucl.ac.uk

                IA-O, ZK, LZ and PL contributed equally to this study.

                Article
                jnnp-2013-306907
                10.1136/jnnp-2013-306907
                4451170
                24790212
                57baf837-c511-468b-9831-26ed6a702ac3
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

                History
                : 1 October 2013
                : 25 February 2014
                : 27 March 2014
                Categories
                1506
                Movement Disorders
                Research paper
                Custom metadata
                unlocked

                Surgery
                parkinson's disease,neurosurgery
                Surgery
                parkinson's disease, neurosurgery

                Comments

                Comment on this article