10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Artificial Intelligence in Gastroenterology

      Submit here before May 31, 2024

      About Digestion: 3.2 Impact Factor I 6.4 CiteScore I 0.914 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Estrogen Regulates the Expression of Small-Conductance Ca 2+-Activated K + Channels in Colonic Smooth Muscle Cells

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim: This study aimed to determine the effects of small-conductance Ca<sup>2+</sup>-activated K<sup>+</sup> (SK) channels in colonic relaxation and the regulation of SK channels by estrogen. Methods: The contractile activity of muscle strips from male rats was estimated, and drugs including vehicle (DMSO), 17β-estradiol (E2), or apamin (SK blocker) were added, respectively. In a further experiment, muscle strips were preincubated with apamin before exposure to E2. The levels of the SK2 and SK3 protein expression in the colonic smooth muscle cells (SMCs) were detected. SMCs were treated with ICI 182780 (estrogen receptor [ER] antagonist) plus E2, BSA-E2, PPT (ERα agonist), or DPN (ERβ agonist). SK3 mRNA and protein expression levels were detected. Results: The muscle strips responded to E2 with a decrease and to apamin with a transient increase in tension. Preincubation with apamin partially prevented E2-induced relaxation. Two SK channel subtypes, SK2 and SK3, were coexpressed with α-actin in colonic SMCs. The quantitative ratio of the SK transcriptional expression in colonic SMCs was SK3 > SK2. The SK3 expression was upregulated by E2, and was downregulated by ICI 182780, but was not influenced by BSA-E2. Furthermore, the effect of PPT on the expression of SK3 was almost the same as that of E2, while DPN did not influence the protein expression of SK3. Conclusion: These findings indicate that SK3 is involved in the E2-induced relaxing effect on rat colonic smooth muscle. Furthermore, E2 upregulates the expression of SK3 in rat SMCs, and that this effect is mediated via the ERα receptor.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation.

          Small conductance Ca(2+)-activated K(+) channels (SK channels) have been reported in excitable cells, where they aid in integrating changes in intracellular Ca(2+) (Ca(2+)(i)) with membrane potential. We have recently reported the functional existence of SK2 channels in human and mouse cardiac myocytes. Moreover, we have found that the channel is predominantly expressed in atria compared to the ventricular myocytes. We hypothesize that knockout of SK2 channels may be sufficient to disrupt the intricate balance of the inward and outward currents during repolarization in atrial myocytes. We further predict that knockout of SK2 channels may predispose the atria to tachy-arrhythmias due to the fact that the late phase of the cardiac action potential is highly susceptible to aberrant excitation. We take advantage of a mouse model with genetic knockout of the SK2 channel gene. In vivo and in vitro electrophysiological studies were performed to probe the functional roles of SK2 channels in the heart. Whole-cell patch-clamp techniques show a significant prolongation of the action potential duration prominently in late cardiac repolarization in atrial myocytes from the heterozygous and homozygous null mutant animals. Moreover, in vivo electrophysiological recordings show inducible atrial fibrillation in the null mutant mice but not wild-type animals. No ventricular arrhythmias are detected in the null mutant mice or wild-type animals. In summary, our data support the important functional roles of SK2 channels in cardiac repolarization in atrial myocytes. Genetic knockout of the SK2 channels results in the delay in cardiac repolarization and atrial arrhythmias.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles.

            Smooth muscles, as in the gastrointestinal tract, are composed of several types of cells. Gastrointestinal muscles contain smooth muscle cells, enteric neurons, glial cells, immune cells, and various classes of interstitial cells. One type of interstitial cell, referred to as 'fibroblast-like cells' by morphologists, are common, but their function is unknown. These cells are found near the terminals of enteric motor neurons, suggesting they could have a role in generating neural responses that help control gastrointestinal movements. We used a novel mouse with bright green fluorescent protein expressed specifically in the fibroblast-like cells to help us identify these cells in the mixture of cells obtained when whole muscles are dispersed with enzymes. We isolated these cells and found they respond to a major class of inhibitory neurotransmitters - purines. We characterized these responses, and our results provide a new hypothesis about the role of fibroblast-like cells in smooth muscle tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-chain estrogen receptors (ERs) reveal that the ERalpha/beta heterodimer emulates functions of the ERalpha dimer in genomic estrogen signaling pathways.

              The effects of estrogens, particularly 17beta-estradiol (E2), are mediated by estrogen receptor alpha (ERalpha) and ERbeta. Upon binding to E2, ERs homo- and heterodimerize when coexpressed. The ER dimer then regulates the transcription of target genes through estrogen responsive element (ERE)-dependent and -independent pathways that constitute genomic estrogen signaling. Although ERalpha and ERbeta have similar ERE and E2 binding properties, they display different transregulatory capacities in both ERE-dependent and -independent signaling pathways. It is therefore likely that the heterodimerization provides novel functions to ERs by combining distinct properties of the contributing partners. The elucidation of the role of the ER heterodimer is critical for the understanding of physiology and pathophysiology of E2 signaling. However, differentially determining target gene responses during cosynthesis of ER subtypes is difficult, since dimers formed are a heterogeneous population of homo- and heterodimers. To circumvent the pivotal dimerization step in ER action and hence produce a homogeneous ER heterodimer population, we utilized a genetic fusion strategy. We joined the cDNAs of ERalpha and/or ERbeta to produce single-chain ERs to simulate the ER homo- and heterodimers. The fusion ERs interacted with ERE and E2 in a manner similar to that observed with the ER dimers. The homofusion receptors mimicked the functions of the parent ER dimers in the ERE-dependent and -independent pathways in transfected mammalian cells, whereas heterofusion receptors emulated the transregulatory properties of the ERalpha dimer. These results suggest that ERalpha is the functionally dominant partner in the ERalpha/beta heterodimer. Copyright 2004 American Society for Microbiology
                Bookmark

                Author and article information

                Journal
                DIG
                Digestion
                10.1159/issn.0012-2823
                Digestion
                S. Karger AG
                0012-2823
                1421-9867
                2015
                April 2015
                14 March 2015
                : 91
                : 3
                : 187-196
                Affiliations
                Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
                Author notes
                *Lin Lin, PhD, Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China), E-Mail lin9100@aliyun.com
                Article
                371544 Digestion 2015;91:187-196
                10.1159/000371544
                25790748
                57cff1eb-653a-4c78-b3b1-6bb0cbe7c23e
                © 2015 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 24 July 2014
                : 12 December 2014
                Page count
                Figures: 7, References: 41, Pages: 10
                Categories
                Original Paper

                Oncology & Radiotherapy,Gastroenterology & Hepatology,Surgery,Nutrition & Dietetics,Internal medicine
                Estradiol,Estrogen receptor,Colon,Smooth muscle cell,Small-conductance Ca2+-activated K+ channels,Muscle contraction

                Comments

                Comment on this article