7
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial DNA-based phylogeography of the large ringlet Erebia euryale (Esper, 1805) suggests recurrent Alpine-Carpathian disjunctions during Pleistocene (Nymphalidae, Satyrinae)

      ,
      Nota Lepidopterologica
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most species of the butterfly genus Erebia are high altitude specialists, in which territorial fragmentation is associated with distinct genetic patterns. This is also true for the large ringlet, Erebia euryale (Esper, 1805), a species widespread across European mountain systems. Previous molecular studies revealed four lineages: two in the Alps, coinciding with the ssp. adyte and isarica, one in the Pyrenees and Cantabria (ssp. pyraenaeicola), and one in the Carpathians and the Balkans (ssp. syrmia). Two morphological subspecies inhabiting delimited ranges in the southern Alps (ssp. pseudoadyte and kunzi) were not included in these studies. To further our understanding of the relationships between populations, both the Alpine and the extra Alpine ones, we sequenced 1,496 bp of the COI gene in 16 Alpine and Jurassian populations and analysed them in combination with published Pyrenean and Carpathian sequences. The resulting haplotype network shows five lineages, congruent with the morphologic delineation of subspecies. Based on the current distribution ranges and genetic affinities, we reconstructed a pre-Würm phylogeographic scenario. This suggests an initial split resulting in an Alpine and a Carpathian clade, probably of Carpathian origin. Within the Alps, three subspecies subsequently differentiated, probably during several glacial cycles, generating ssp. adyte, pseudoadyte and kunzi. In parallel, the Carpathian clade underwent a second Alpine–Carpathian disjunction and differentiated into ssp. euryale and syrmia in the Carpathians, and ssp. ocellaris and isarica in the eastern Alps, revealing a heterogeneous origin of the E. euryale subspecies across the Alps. The Pyrenean and Jurassian populations are a relatively young divergence in the western part of the species’ range.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies

          Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7

            Abstract Bayesian inference of phylogeny using Markov chain Monte Carlo (MCMC) plays a central role in understanding evolutionary history from molecular sequence data. Visualizing and analyzing the MCMC-generated samples from the posterior distribution is a key step in any non-trivial Bayesian inference. We present the software package Tracer (version 1.7) for visualizing and analyzing the MCMC trace files generated through Bayesian phylogenetic inference. Tracer provides kernel density estimation, multivariate visualization, demographic trajectory reconstruction, conditional posterior distribution summary, and more. Tracer is open-source and available at http://beast.community/tracer.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Nota Lepidopterologica
                NL
                Pensoft Publishers
                2367-5365
                0342-7536
                January 19 2022
                January 19 2022
                : 45
                : 65-86
                Article
                10.3897/nl.45.68138
                584ef7ee-a0f0-4613-acbd-ba79fe509ec1
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article