9
views
0
recommends
+1 Recommend
3 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tracking COVID-19 in Europe: Infodemiology Approach

      research-article
      , BSc, MSc 1 ,
      , ,
      (Reviewer), (Reviewer)
      JMIR Public Health and Surveillance
      JMIR Publications
      big data, coronavirus, COVID-19, infodemiology, infoveillance, Google Trends

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Infodemiology (ie, information epidemiology) uses web-based data to inform public health and policy. Infodemiology metrics have been widely and successfully used to assess and forecast epidemics and outbreaks.

          Objective

          In light of the recent coronavirus disease (COVID-19) pandemic that started in Wuhan, China in 2019, online search traffic data from Google are used to track the spread of the new coronavirus disease in Europe.

          Methods

          Time series from Google Trends from January to March 2020 on the Topic (Virus) of “Coronavirus” were retrieved and correlated with official data on COVID-19 cases and deaths worldwide and in the European countries that have been affected the most: Italy (at national and regional level), Spain, France, Germany, and the United Kingdom.

          Results

          Statistically significant correlations are observed between online interest and COVID-19 cases and deaths. Furthermore, a critical point, after which the Pearson correlation coefficient starts declining (even if it is still statistically significant) was identified, indicating that this method is most efficient in regions or countries that have not yet peaked in COVID-19 cases.

          Conclusions

          In the past, infodemiology metrics in general and data from Google Trends in particular have been shown to be useful in tracking and forecasting outbreaks, epidemics, and pandemics as, for example, in the cases of the Middle East respiratory syndrome, Ebola, measles, and Zika. With the COVID-19 pandemic still in the beginning stages, it is essential to explore and combine new methods of disease surveillance to assist with the preparedness of health care systems at the regional level.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Report: not found

          Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand

          The global impact of COVID-19 has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 H1N1 influenza pandemic. Here we present the results of epidemiological modelling which has informed policymaking in the UK and other countries in recent weeks. In the absence of a COVID-19 vaccine, we assess the potential role of a number of public health measures – so-called non-pharmaceutical interventions (NPIs) – aimed at reducing contact rates in the population and thereby reducing transmission of the virus. In the results presented here, we apply a previously published microsimulation model to two countries: the UK (Great Britain specifically) and the US. We conclude that the effectiveness of any one intervention in isolation is likely to be limited, requiring multiple interventions to be combined to have a substantial impact on transmission. Two fundamental strategies are possible: (a) mitigation, which focuses on slowing but not necessarily stopping epidemic spread – reducing peak healthcare demand while protecting those most at risk of severe disease from infection, and (b) suppression, which aims to reverse epidemic growth, reducing case numbers to low levels and maintaining that situation indefinitely. Each policy has major challenges. We find that that optimal mitigation policies (combining home isolation of suspect cases, home quarantine of those living in the same household as suspect cases, and social distancing of the elderly and others at most risk of severe disease) might reduce peak healthcare demand by 2/3 and deaths by half. However, the resulting mitigated epidemic would still likely result in hundreds of thousands of deaths and health systems (most notably intensive care units) being overwhelmed many times over. For countries able to achieve it, this leaves suppression as the preferred policy option. We show that in the UK and US context, suppression will minimally require a combination of social distancing of the entire population, home isolation of cases and household quarantine of their family members. This may need to be supplemented by school and university closures, though it should be recognised that such closures may have negative impacts on health systems due to increased absenteeism. The major challenge of suppression is that this type of intensive intervention package – or something equivalently effective at reducing transmission – will need to be maintained until a vaccine becomes available (potentially 18 months or more) – given that we predict that transmission will quickly rebound if interventions are relaxed. We show that intermittent social distancing – triggered by trends in disease surveillance – may allow interventions to be relaxed temporarily in relative short time windows, but measures will need to be reintroduced if or when case numbers rebound. Last, while experience in China and now South Korea show that suppression is possible in the short term, it remains to be seen whether it is possible long-term, and whether the social and economic costs of the interventions adopted thus far can be reduced.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Infodemiology: tracking flu-related searches on the web for syndromic surveillance.

            Syndromic surveillance uses health-related data that precede diagnosis and signal a sufficient probability of a case or an outbreak to warrant further public health response. While most syndromic surveillance systems rely on data from clinical encounters with health professionals, I started to explore in 2004 whether analysis of trends in Internet searches can be useful to predict outbreaks such as influenza epidemics and prospectively gathered data on Internet search trends for this purpose. There is an excellent correlation between the number of clicks on a keyword-triggered link in Google with epidemiological data from the flu season 2004/2005 in Canada (Pearson correlation coefficient of current week clicks with the following week influenza cases r=.91). The "Google ad sentinel method" proved to be more timely, more accurate and - with a total cost of Can$365.64 for the entire flu-season - considerably cheaper than the traditional method of reports on influenza-like illnesses observed in clinics by sentinel physicians. Systematically collecting and analyzing health information demand data from the Internet has considerable potential to be used for syndromic surveillance. Tracking web searches on the Internet has the potential to predict population-based events relevant for public health purposes, such as real outbreaks, but may also be confounded by "epidemics of fear". Data from such "infodemiology studies" should also include longitudinal data on health information supply.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Too Far to Care? Measuring Public Attention and Fear for Ebola Using Twitter

              Background In 2014, the world was startled by a sudden outbreak of Ebola. Although Ebola infections and deaths occurred almost exclusively in Guinea, Sierra Leone, and Liberia, few potential Western cases, in particular, caused a great stir among the public in Western countries. Objective This study builds on the construal level theory to examine the relationship between psychological distance to an epidemic and public attention and sentiment expressed on Twitter. Whereas previous research has shown the potential of social media to assess real-time public opinion and sentiment, generalizable insights that further the theory development lack. Methods Epidemiological data (number of Ebola infections and fatalities) and media data (tweet volume and key events reported in the media) were collected for the 2014 Ebola outbreak, and Twitter content from the Netherlands was coded for (1) expressions of fear for self or fear for others and (2) psychological distance of the outbreak to the tweet source. Longitudinal relations were compared using vector error correction model (VECM) methodology. Results Analyses based on 4500 tweets revealed that increases in public attention to Ebola co-occurred with severe world events related to the epidemic, but not all severe events evoked fear. As hypothesized, Web-based public attention and expressions of fear responded mainly to the psychological distance of the epidemic. A chi-square test showed a significant positive relation between proximity and fear: χ2 2=103.2 (P<.001). Public attention and fear for self in the Netherlands showed peaks when Ebola became spatially closer by crossing the Mediterranean Sea and Atlantic Ocean. Fear for others was mostly predicted by the social distance to the affected parties. Conclusions Spatial and social distance are important predictors of public attention to worldwide crisis such as epidemics. These factors need to be taken into account when communicating about human tragedies.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Public Health Surveill
                JMIR Public Health Surveill
                JPH
                JMIR Public Health and Surveillance
                JMIR Publications (Toronto, Canada )
                2369-2960
                Apr-Jun 2020
                20 April 2020
                : 6
                : 2
                : e18941
                Affiliations
                [1 ] Department of Computing Science and Mathematics Faculty of Natural Sciences University of Stirling Stirling United Kingdom
                Author notes
                Corresponding Author: Amaryllis Mavragani amaryllis.mavragani1@ 123456stir.ac.uk
                Author information
                https://orcid.org/0000-0001-6106-0873
                Article
                v6i2e18941
                10.2196/18941
                7173241
                32250957
                58508b56-7c74-4a68-b12c-4e04809f089a
                ©Amaryllis Mavragani. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 20.04.2020.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete bibliographic information, a link to the original publication on http://publichealth.jmir.org, as well as this copyright and license information must be included.

                History
                : 28 March 2020
                : 2 April 2020
                Categories
                Original Paper
                Original Paper

                big data,coronavirus,covid-19,infodemiology,infoveillance,google trends

                Comments

                Comment on this article