12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exercise has a myriad of physiological benefits that derive in part from its ability to improve cardiometabolic health. The periodic metabolic stress imposed by regular exercise appears fundamental in driving cardiovascular tissue adaptation. However, different types, intensities, or durations of exercise elicit different levels of metabolic stress and may promote distinct types of tissue remodeling. In this review, we discuss how exercise affects cardiac structure and function and how exercise-induced changes in metabolism regulate cardiac adaptation. Current evidence suggests that exercise typically elicits an adaptive, beneficial form of cardiac remodeling that involves cardiomyocyte growth and proliferation; however, chronic levels of extreme exercise may increase the risk for pathological cardiac remodeling or sudden cardiac death. An emerging theme underpinning acute as well as chronic cardiac adaptations to exercise is metabolic periodicity, which appears important for regulating mitochondrial quality and function, for stimulating metabolism-mediated exercise gene programs and hypertrophic kinase activity, and for coordinating biosynthetic pathway activity. In addition, circulating metabolites liberated during exercise trigger physiological cardiac growth. Further understanding of how exercise-mediated changes in metabolism orchestrate cell signaling and gene expression could facilitate therapeutic strategies to maximize the benefits of exercise and improve cardiac health.

          Related collections

          Most cited references232

          • Record: found
          • Abstract: found
          • Article: not found

          Myocardial fatty acid metabolism in health and disease.

          There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bidirectional transport of amino acids regulates mTOR and autophagy.

            Amino acids are required for activation of the mammalian target of rapamycin (mTOR) kinase which regulates protein translation, cell growth, and autophagy. Cell surface transporters that allow amino acids to enter the cell and signal to mTOR are unknown. We show that cellular uptake of L-glutamine and its subsequent rapid efflux in the presence of essential amino acids (EAA) is the rate-limiting step that activates mTOR. L-glutamine uptake is regulated by SLC1A5 and loss of SLC1A5 function inhibits cell growth and activates autophagy. The molecular basis for L-glutamine sensitivity is due to SLC7A5/SLC3A2, a bidirectional transporter that regulates the simultaneous efflux of L-glutamine out of cells and transport of L-leucine/EAA into cells. Certain tumor cell lines with high basal cellular levels of L-glutamine bypass the need for L-glutamine uptake and are primed for mTOR activation. Thus, L-glutamine flux regulates mTOR, translation and autophagy to coordinate cell growth and proliferation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physical fitness and all-cause mortality. A prospective study of healthy men and women.

              We studied physical fitness and risk of all-cause and cause-specific mortality in 10,224 men and 3120 women who were given a preventive medical examination. Physical fitness was measured by a maximal treadmill exercise test. Average follow-up was slightly more than 8 years, for a total of 110,482 person-years of observation. There were 240 deaths in men and 43 deaths in women. Age-adjusted all-cause mortality rates declined across physical fitness quintiles from 64.0 per 10,000 person-years in the least-fit men to 18.6 per 10,000 person-years in the most-fit men (slope, -4.5). Corresponding values for women were 39.5 per 10,000 person-years to 8.5 per 10,000 person-years (slope, -5.5). These trends remained after statistical adjustment for age, smoking habit, cholesterol level, systolic blood pressure, fasting blood glucose level, parental history of coronary heart disease, and follow-up interval. Lower mortality rates in higher fitness categories also were seen for cardiovascular disease and cancer of combined sites. Attributable risk estimates for all-cause mortality indicated that low physical fitness was an important risk factor in both men and women. Higher levels of physical fitness appear to delay all-cause mortality primarily due to lowered rates of cardiovascular disease and cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cardiovasc Med
                Front Cardiovasc Med
                Front. Cardiovasc. Med.
                Frontiers in Cardiovascular Medicine
                Frontiers Media S.A.
                2297-055X
                11 September 2018
                2018
                : 5
                : 127
                Affiliations
                [1] 1Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center , Louisville, KY, United States
                [2] 2Department of Physiology, University of Louisville , Louisville, KY, United States
                Author notes

                Edited by: Umberto Campia, Brigham and Women's Hospital, Harvard Medical School, United States

                Reviewed by: Adam R. Wende, University of Alabama at Birmingham, United States; James C. Lo, Weill Cornell Medicine, Cornell University, United States

                *Correspondence: Bradford G. Hill bradford.hill@ 123456louisville.edu

                This article was submitted to Cardiovascular Metabolism, a section of the journal Frontiers in Cardiovascular Medicine

                Article
                10.3389/fcvm.2018.00127
                6141631
                30255026
                58a539aa-a87a-4141-a32e-fbfeed50fa0a
                Copyright © 2018 Fulghum and Hill.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 June 2018
                : 23 August 2018
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 280, Pages: 17, Words: 13764
                Categories
                Cardiovascular Medicine
                Review

                exercise,heart,glucose,mitochondria,hypertrophy,cell signaling,metabokine,cardiomyopathy

                Comments

                Comment on this article