1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physiological, Biochemical, and Agronomic Trait Responses of Nigella sativa Genotypes to Water Stress

      , , , , , ,
      Horticulturae
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Water stress may affect the growth, physiology, morphology, biochemistry, and productivity of Nigella sativa (black cumin), a medicinal and aromatic plant. Measuring these parameters under various irrigation regimes could provide useful information for successful genotype selection and breeding. Therefore, these agronomically significant features were evaluated in ten black cumin genotypes (Afghanistan, Pakistan, Syria, India, Arak, Isfahan, Semirom, Shahreza, Shahrekord, and Mashhad) under three irrigation regimes (40% (I1), 60% (I2), and 80% (I3) of permissible moisture discharge) during the 2017 to 2018 growing seasons. Water stress was shown to increase the levels of carotenoids (Cars), proline, total soluble carbohydrates (TSC), malondialdehyde (MDA), hydrogen peroxide (H2O2), catalase (CAT), and ascorbate peroxidase (APX) activities but reduced the relative water content (RWC) and chlorophyll content. The highest increases in Cars, TSC, proline, CAT, and APX were noted in the Arak, Isfahan, Semirom, Shahreza, Shahrekord, and Mashhad genotypes under the I3 water regime, respectively. At the same time, the lowest decrease was observed in chlorophyll, H2O2, and relative water content (RWC) in Semirom. According to the stress susceptibility index, the most resistant genotypes were Shahrekord under I2 and Semirom under I3. These data demonstrate that the irrigation regimes affected the physiological, biochemical, and morphological features of black cumin both qualitatively and quantitatively, although the impact varied depending upon the genotype, irrigation regime, and traits. As such, the results presented represent valuable information with which to inform future selection and breeding programs for drought-tolerant black cumin. This is of particular significance considering global climate change.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid determination of free proline for water-stress studies

          Plant and Soil, 39(1), 205-207
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Colorimetric Method for Determination of Sugars and Related Substances

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress, antioxidants and stress tolerance.

              Traditionally, reactive oxygen intermediates (ROIs) were considered to be toxic by-products of aerobic metabolism, which were disposed of using antioxidants. However, in recent years, it has become apparent that plants actively produce ROIs as signaling molecules to control processes such as programmed cell death, abiotic stress responses, pathogen defense and systemic signaling. Recent advances including microarray studies and the development of mutants with altered ROI-scavenging mechanisms provide new insights into how the steady-state level of ROIs are controlled in cells. In addition, key steps of the signal transduction pathway that senses ROIs in plants have been identified. These raise several intriguing questions about the relationships between ROI signaling, ROI stress and the production and scavenging of ROIs in the different cellular compartments.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Horticulturae
                Horticulturae
                MDPI AG
                2311-7524
                March 2022
                February 23 2022
                : 8
                : 3
                : 193
                Article
                10.3390/horticulturae8030193
                58d52177-fef2-479d-b39b-3f4ee25f4bc0
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article