4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals

      1 , 1 , 1
      Catalysis Reviews
      Informa UK Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references238

          • Record: found
          • Abstract: found
          • Article: not found

          The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters.

          The kinetic parameters of enzymes are key to understanding the rate and specificity of most biological processes. Although specific trends are frequently studied for individual enzymes, global trends are rarely addressed. We performed an analysis of k(cat) and K(M) values of several thousand enzymes collected from the literature. We found that the "average enzyme" exhibits a k(cat) of ~0 s(-1) and a k(cat)/K(M) of ~10(5) s(-1) M(-1), much below the diffusion limit and the characteristic textbook portrayal of kinetically superior enzymes. Why do most enzymes exhibit moderate catalytic efficiencies? Maximal rates may not evolve in cases where weaker selection pressures are expected. We find, for example, that enzymes operating in secondary metabolism are, on average, ~30-fold slower than those of central metabolism. We also find indications that the physicochemical properties of substrates affect the kinetic parameters. Specifically, low molecular mass and hydrophobicity appear to limit K(M) optimization. In accordance, substitution with phosphate, CoA, or other large modifiers considerably lowers the K(M) values of enzymes utilizing the substituted substrates. It therefore appears that both evolutionary selection pressures and physicochemical constraints shape the kinetic parameters of enzymes. It also seems likely that the catalytic efficiency of some enzymes toward their natural substrates could be increased in many cases by natural or laboratory evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands.

            The cores of many types of polymers, ligands, natural products, and pharmaceuticals contain biaryl or substituted aromatic structures, and efficient methods of synthesizing these structures are crucial to the work of a broad spectrum of organic chemists. Recently, Pd-catalyzed carbon-carbon bond-forming processes, particularly the Suzuki-Miyaura cross-coupling reaction (SMC), have risen in popularity for this purpose. The SMC has many advantages over other methods for constructing these moieties, including mild conditions, high tolerance toward functional groups, the commercial availability and stability of its reagents, and the ease of handling and separating byproducts from its reaction mixtures. Until 1998, most catalysts for the SMC employed triarylphosphine ligands. More recently, new bulky and electron-rich phosphine ligands, which can dramatically improve the efficiency and selectivity of such cross-coupling reactions, have been introduced. In the course of our studies on carbon-nitrogen bond-forming reactions, we found that the use of electron-rich and bulky phosphines enhanced the rate of both the oxidative addition and reductive elimination processes; this was the beginning of our development of a new family of ligands, the dialkylbiarylphosphines L1-L12. These ligands can be used for a wide variety of palladium-catalyzed carbon-carbon, carbon-nitrogen, and carbon-oxygen bond-forming processes as well as serving as supporting ligands for a number of other reactions. The enhanced reactivity of these catalysts has expanded the scope of cross-coupling partners that can be employed in the SMC. With use of such dialkylbiarylphosphine ligands, the coupling of unactivated aryl chlorides, aryl tosylates, heteroaryl systems, and very hindered substrate combinations have become routine. The utility of these ligands has been successfully demonstrated in a wide number of synthetic applications, including industrially relevant processes. In this Account, we provide an overview of the use and impact of dialkylbiarylphosphine ligands in the SMC. We discuss our studies on the mechanistic framework of the reaction, which have allowed us to rationally modify the ligand structures in order to tune their properties. We also describe selected applications in the synthesis of natural products and new materials to illustrate the utility of these dialkylbiarylphosphine ligands in various "real-world" synthetic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Principles and applications of halogen bonding in medicinal chemistry and chemical biology.

              Halogen bonding has been known in material science for decades, but until recently, halogen bonds in protein-ligand interactions were largely the result of serendipitous discovery rather than rational design. In this Perspective, we provide insights into the phenomenon of halogen bonding, with special focus on its role in drug discovery. We summarize the theoretical background defining its strength and directionality, provide a systematic analysis of its occurrence and interaction geometries in protein-ligand complexes, and give recent examples where halogen bonding has been successfully harnessed for lead identification and optimization. In light of these data, we discuss the potential and limitations of exploiting halogen bonds for molecular recognition and rational drug design.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Catalysis Reviews
                Catalysis Reviews
                Informa UK Limited
                0161-4940
                1520-5703
                July 03 2022
                October 15 2020
                July 03 2022
                : 64
                : 3
                : 533-591
                Affiliations
                [1 ]Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
                Article
                10.1080/01614940.2020.1823788
                59173e7f-08d3-44c5-b66e-ea548f0efe81
                © 2022

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article