6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The mucosal surfaces of both eyes are immunologically linked by a neurogenic inflammatory reflex involving TRPV1 and substance P

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          B16 as a mouse model for human melanoma.

          This unit details protocols for in vivo models of subcutaneous growth and pulmonary metastases of B16 melanoma. Therapeutic approaches include the use of B16.GM-CSF and rVVmTRP-1 to induce autoimmune vitiligo and tumor protection. The induction and use of gp 100-specific therapeutic cytotoxic T lymphocytes (CTL) are discussed. Methods are also included for CTL induction, isolation and testing, CTL maintenance, and adoptive transfer. Support protocols detail the testing of mouse sera for presence of MDA-specific antibodies by immunoblotting and ELISA, respectively. Additional sections, including growing B16 melanoma, enumerating pulmonary metastases, and use of recombinant viruses for vaccination, are discussed together with safety concerns.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

            Background The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis.

              Substance P (SP) is an undecapeptide present in the CNS and the peripheral nervous system. SP released from the peripheral nerves exerts its biological and immunological activity via high-affinity neurokinin 1 receptor (NK1R). SP is also produced by immune cells and acts as an autocrine or paracrine fashion to regulate the function of immune cells. In addition to its proinflammatory role, SP and its metabolites in combination with insulin-like growth factor-1 are shown to promote the corneal epithelial wound healing. Recently, we showed an altered ocular surface homeostasis in unmanipulated NK1R-/-mice, suggesting the role of SP-NK1R signaling in ocular surface homeostasis under steady-state. This review summarizes the immunobiology of SP and its effect on immune cells and immunity to microbial infection. In addition, the effect of SP in inflammation, wound healing, and corneal epithelial homeostasis in the eye is discussed.
                Bookmark

                Author and article information

                Journal
                Mucosal Immunology
                Mucosal Immunol
                Springer Nature
                1933-0219
                1935-3456
                June 4 2018
                Article
                10.1038/s41385-018-0040-5
                29867077
                597409dc-39b7-4c2b-b2da-1b6cc8ec5271
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article