5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cytochrome P450: a novel system modulating Ca2+channels and contraction in mammalian heart cells

      , ,
      The Journal of Physiology
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          1. Cytochrome P450 (P450) is a ubiquitous enzyme system that catalyses oxidative reactions of numerous endogenous and exogenous compounds. The modulatory effects of P450 on the L-type Ca2+ current (ICa), intracellular free Ca2+ signals and cell shortening were assessed in adult rat single ventricular myocytes. 2. Bath administration of the imidazole antimycotics, clotrimazole, econazole and miconazole, which are potent P450 inhibitors, significantly suppressed cardiac ICa. While the Ca2+ channel antagonist nifedipine blocked ICa within 30 s, clotrimazole-induced suppression of ICa required 5.1 +/- 0.4 min (n = 14) to reach a steady low level. The suppression of ICa was dose dependent and recovered after washout of clotrimazole. Intracellular dialysis with the P450 antibody anti-rat CYP1A2 also significantly reduced cardiac ICa. 3. Additional administration of the beta-adrenergic agonist isoprenaline (1 microM) or the membrane-permeable 8-bromo-cAMP (2 mM) completely reversed the suppressant effects of clotrimazole and NaCN on ICa. In addition, intracellular dialysis with 2 mM cAMP abolished the P450 inhibitor-induced suppression of ICa. Phosphorylation of the channel with hydrolysis-resistant ATPgammaS prevented the suppressant effect of clotrimazole on ICa. Furthermore, dephosphorylation of the Ca2+ channel with intracellular dialysis with phosphatase types I and II reduced ICa by 85 +/- 3 % and abolished clotrimazole-induced suppression of ICa. 4. Extracellular administration of the phospholipase A2 inhibitors mepacrine and 4-bromophenacyl bromide significantly suppressed ICa. 5. Clotrimazole, econazole, miconazole and CN- also significantly inhibited intracellular free Ca2+ signals and cell shortening in rat single ventricular myocytes. 6. Intracellular cAMP content was significantly reduced in isolated ventricular myocytes incubated with clotrimazole or CN-. Extracellular administration of 11, 12-epoxyeicosatrienoic acid, one of the P450-mediated metabolites of arachidonic acid, enhanced ICa and intracellular cAMP content. The epoxyeicosatrienoic acid also restored the amplitude of the reduced ICa in P450 antibody-dialysed myocytes. 7. The present data suggest that cytochrome P450 modulates cardiac ICa and cell contraction, and the modulation may result from changes in intracellular levels of cAMP by P450- mediated metabolites of arachidonic acid.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's.

          Cytochrome P450BM-3, a bacterial fatty acid monoxygenase, resembles the eukaryotic microsomal P450's and their flavoprotein reductase in primary structure and function. The three-dimensional structure of the hemoprotein domain of P450BM-3 was determined by x-ray diffraction and refined to an R factor of 16.9 percent at 2.0 angstrom resolution. The structure consists of an alph and a beta domain. The active site heme is accessible through a long hydrophobic channel formed primarily by the beta domain and the B' and F helices of the alpha domain. The two molecules in the asymmetric unit differ in conformation around the substrate binding pocket. Substantial differences between P450BM-3 and P450cam, the only other P450 structure available, are observed around the substrate binding pocket and the regions important for redox partner binding. A general mechanism for proton transfer in P450's is also proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart.

            A cDNA encoding a human cytochrome P450 arachidonic acid epoxygenase was isolated from a human liver cDNA library. Sequence analysis revealed that this 1,876-base pair cDNA contained an open reading frame and encoded a new 502-amino acid protein designated CYP2J2. Blot hybridization analysis of RNA prepared from human tissues revealed that CYP2J2 was highly expressed in the heart. Recombinant CYP2J2 protein was prepared using the baculovirus expression system and purified to near electrophoretic homogeneity. The enzyme metabolized arachidonic acid predominantly via olefin epoxidation to all four regioisomeric cis-epoxyeicosatrienoic acids (catalytic turnover 65 pmol of product formed/nmol of cytochrome P450/min at 30 degrees C). Epoxidation of arachidonic acid by CYP2J2 at the 14,15-olefin was highly enantioselective for (14R, 15S)-epoxyeicosatrienoic acid (76% optical purity). Immunoblotting of microsomal fractions prepared from human tissues using a polyclonal antibody raised against the recombinant hemoprotein confirmed primary expression of CYP2J2 protein in human heart. The in vivo significance of CYP2J2 was suggested by documenting the presence of epoxyeicosatrienoic acids in the human heart using gas chromatography/mass spectroscopy. Importantly, the chirality of CYP2J2 products matched that of the epoxyeicosatrienoic acid enantiomers present, in vivo, in human heart. We propose that CYP2J2 is one of the enzymes responsible for epoxidation of endogenous arachidonic acid pools in human heart and that epoxyeicosatrienoic acids may, therefore, play important functional roles in cardiac physiology.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells.

                Bookmark

                Author and article information

                Journal
                The Journal of Physiology
                Wiley
                00223751
                May 1998
                May 1998
                September 22 2004
                : 508
                : 3
                : 777-792
                Article
                10.1111/j.1469-7793.1998.777bp.x
                2230927
                9518732
                59830647-7668-47c4-99b6-a466a5dfd129
                © 2004

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article