18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Scalable explicit implementation of anisotropic diffusion with Runge-Kutta-Legendre super-time-stepping

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An important ingredient in numerical modelling of high temperature magnetised astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures.Magnetohydrodynamics (MHD) typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (\(\Delta x\)) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time stepping (STS) methods has been discussed in literature but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work we highlight a second order (in time) Runge Kutta Legendre (RKL) scheme (first described by Meyer et. al. 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first order super time stepping schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than \(10^4\) processors.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: not found
          • Article: not found

          A second-order accurate Super TimeStepping formulation for anisotropic thermal conduction

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Divergence-Free Adaptive Mesh Refinement for Magnetohydrodynamics

            In this paper we present a full-fledged scheme for the second order accurate, divergence-free evolution of vector fields on an adaptive mesh refinement (AMR) hierarchy. We focus here on adaptive mesh MHD. The scheme is based on making a significant advance in the divergence-free reconstruction of vector fields. In that sense, it complements the earlier work of Balsara and Spicer (1999) where we discussed the divergence-free time-update of vector fields which satisfy Stoke's law type evolution equations. Our advance in divergence-free reconstruction of vector fields is such that it reduces to the total variation diminishing (TVD) property for one-dimensional evolution and yet goes beyond it in multiple dimensions. Divergence-free restriction is also discussed. An electric field correction strategy is presented for use on AMR meshes. The electric field correction strategy helps preserve the divergence-free evolution of the magnetic field even when the time steps are sub-cycled on refined meshes. The above-mentioned innovations have been implemented in Balsara's RIEMANN framework for parallel, self-adaptive computational astrophysics which supports both non-relativistic and relativistic MHD. Several rigorous, three dimensional AMR-MHD test problems with strong discontinuities have been run with the RIEMANN framework showing that the strategy works very well.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Preserving Monotonicity in Anisotropic Diffusion

              We show that standard algorithms for anisotropic diffusion based on centered differencing (including the recent symmetric algorithm) do not preserve monotonicity. In the context of anisotropic thermal conduction, this can lead to the violation of the entropy constraints of the second law of thermodynamics, causing heat to flow from regions of lower temperature to higher temperature. In regions of large temperature variations, this can cause the temperature to become negative. Test cases to illustrate this for centered asymmetric and symmetric differencing are presented. Algorithms based on slope limiters, analogous to those used in second order schemes for hyperbolic equations, are proposed to fix these problems. While centered algorithms may be good for many cases, the main advantage of limited methods is that they are guaranteed to avoid negative temperature (which can cause numerical instabilities) in the presence of large temperature gradients. In particular, limited methods will be useful to simulate hot, dilute astrophysical plasmas where conduction is anisotropic and the temperature gradients are enormous, e.g., collisionless shocks and disk-corona interface.
                Bookmark

                Author and article information

                Journal
                2017-02-17
                Article
                1702.05487
                59a55277-067b-4444-aaaf-8183c3bfe6df

                http://creativecommons.org/publicdomain/zero/1.0/

                History
                Custom metadata
                14 pages, 9 figures, submitted to MNRAS
                astro-ph.IM astro-ph.GA

                Galaxy astrophysics,Instrumentation & Methods for astrophysics
                Galaxy astrophysics, Instrumentation & Methods for astrophysics

                Comments

                Comment on this article