Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Maintaining Sufficient Nanos Is a Critical Function for Polar Granule Component in the Specification of Primordial Germ Cells

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Primordial germ cells (PGC) are the precursors of germline stem cells. In Drosophila, PGC specification is thought to require transcriptional quiescence and three genes, polar granule component ( pgc ), nanos ( nos ), and germ cell less ( gcl ) function to downregulate Pol II transcription. While it is not understood how nos or gcl represses transcription, pgc does so by inhibiting the transcription elongation factor b (P-TEFb), which is responsible for phosphorylating Ser2 residues in the heptad repeat of the C-terminal domain (CTD) of the largest Pol II subunit. In the studies reported here, we demonstrate that nos are a critical regulatory target of pgc . We show that a substantial fraction of the PGCs in pgc embryos have greatly reduced levels of Nos protein and exhibit phenotypes characteristic of nos PGCs. Lastly, restoring germ cell–specific expression of Nos is sufficient to ameliorate the pgc phenotype.

      Related collections

      Most cited references 33

      • Record: found
      • Abstract: found
      • Article: not found

      Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.

       N Perrimon,  H. Brand (1993)
      We have designed a system for targeted gene expression that allows the selective activation of any cloned gene in a wide variety of tissue- and cell-specific patterns. The gene encoding the yeast transcriptional activator GAL4 is inserted randomly into the Drosophila genome to drive GAL4 expression from one of a diverse array of genomic enhancers. It is then possible to introduce a gene containing GAL4 binding sites within its promoter, to activate it in those cells where GAL4 is expressed, and to observe the effect of this directed misexpression on development. We have used GAL4-directed transcription to expand the domain of embryonic expression of the homeobox protein even-skipped. We show that even-skipped represses wingless and transforms cells that would normally secrete naked cuticle into denticle secreting cells. The GAL4 system can thus be used to study regulatory interactions during embryonic development. In adults, targeted expression can be used to generate dominant phenotypes for use in genetic screens. We have directed expression of an activated form of the Dras2 protein, resulting in dominant eye and wing defects that can be used in screens to identify other members of the Dras2 signal transduction pathway.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Phosphorylation and functions of the RNA polymerase II CTD.

        The C-terminal repeat domain (CTD), an unusual extension appended to the C terminus of the largest subunit of RNA polymerase II, serves as a flexible binding scaffold for numerous nuclear factors; which factors bind is determined by the phosphorylation patterns on the CTD repeats. Changes in phosphorylation patterns, as polymerase transcribes a gene, are thought to orchestrate the association of different sets of factors with the transcriptase and strongly influence functional organization of the nucleus. In this review we appraise what is known, and what is not known, about patterns of phosphorylation on the CTD of RNA polymerases II at the beginning, the middle, and the end of genes; the proposal that doubly phosphorylated repeats are present on elongating polymerase is explored. We discuss briefly proteins known to associate with the phosphorylated CTD at the beginning and ends of genes; we explore in more detail proteins that are recruited to the body of genes, the diversity of their functions, and the potential consequences of tethering these functions to elongating RNA polymerase II. We also discuss accumulating structural information on phosphoCTD-binding proteins and how it illustrates the variety of binding domains and interaction modes, emphasizing the structural flexibility of the CTD. We end with a number of open questions that highlight the extent of what remains to be learned about the phosphorylation and functions of the CTD.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Conserved role of nanos proteins in germ cell development.

          In Drosophila, maternally supplied Nanos functions in the migration of primordial germ cells (PGCs) into the gonad; in mice, zygotic genes are involved instead. We report the cloning and the functional analyses of nanos2 and nanos3 in mice. These genes are differentially expressed in mouse PGCs. nanos2 is predominantly expressed in male germ cells, and the elimination of this gene results in a complete loss of spermatogonia. However, nanos3 is found in migrating PGCs, and the elimination of this factor results in the complete loss of germ cells in both sexes. Hence, although mice and flies differ in their mechanisms for germ cell specification, there seems to be conserved function for nanos proteins among invertebrates and vertebrates.
            Bookmark

            Author and article information

            Affiliations
            Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
            Author notes

            Supporting information is available online at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.004192/-/DC1

            [1]

            Present address: Swarthmore College, 500 College Ave., Swarthmore, PA 19081.

            [2 ]Corresponding author: Lewis Thomas Labs, Washington Road, Princeton University, Princeton, NJ 08544. E-mail: pschedl@ 123456molbio.princeton.edu
            Journal
            G3 (Bethesda)
            Genetics
            ggg
            ggg
            ggg
            G3: Genes|Genomes|Genetics
            Genetics Society of America
            2160-1836
            1 November 2012
            November 2012
            : 2
            : 11
            : 1397-1403
            23173091
            3484670
            GGG_004192
            10.1534/g3.112.004192
            Copyright © 2012 Deshpande et al.

            This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Product
            Categories
            Investigations
            Custom metadata
            v1

            Genetics

            Comments

            Comment on this article