0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Statin enhances cytokine-mediated induction of nitric oxide synthesis in vascular smooth muscle cells

      , ,
      Cardiovascular Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury.

          Besides synthesizing nitric oxide (NO), purified neuronal NO synthase (nNOS) can produce superoxide (.O2-) at lower L-Arg concentrations. By using electron paramagnetic resonance spin-trapping techniques, we monitored NO and .O2- formation in nNOS-transfected human kidney 293 cells. In control transfected cells, the Ca2+ ionophore A23187 triggered NO generation but no .O2- was seen. With cells in L-Arg-free medium, we observed .O2- formation that increased as the cytosolic L-Arg levels decreased, while NO generation declined. .O2- formation was virtually abolished by the specific NOS blocker, N-nitro-L-arginine methyl ester (L-NAME). Nitrotyrosine, a specific nitration product of peroxynitrite, accumulated in L-Arg-depleted cells but not in control cells. Activation by A23187 was cytotoxic to L-Arg-depleted, but not to control cells, with marked lactate dehydrogenase release. The cytotoxicity was largely prevented by either superoxide dismutase or L-NAME. Thus, with reduced L-Arg availability NOS elicits cytotoxicity by generating .O2- and NO that interact to form the potent oxidant peroxynitrite. Regulating arginine levels may provide a therapeutic approach to disorders involving .O2-/NO-mediated cellular injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors

            The mechanism of superoxide generation by endothelial nitric oxide synthase (eNOS) was investigated by the electron spin resonance spin-trapping technique using 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide. In the absence of calcium/calmodulin, eNOS produces low amounts of superoxide. Upon activating eNOS electron transfer reactions by calcium/calmodulin binding, superoxide formation is increased. Heme-iron ligands, cyanide, imidazole, and the phenyl(diazene)-derived radical inhibit superoxide generation. No inhibition is observed after addition of l -arginine, N G -hydroxy- l -arginine, l -thiocitrulline, and l - N G -monomethyl arginine to activated eNOS. These results demonstrate that superoxide is generated from the oxygenase domain by dissociation of the ferrous–dioxygen complex and that occupation of the l -arginine binding site does not inhibit this process. However, the concomitant addition of l -arginine and tetrahydrobiopterin (BH 4 ) abolishes superoxide generation by eNOS. Under these conditions, l -citrulline production is close to maximal. Our data indicate that BH 4 fully couples l -arginine oxidation to NADPH consumption and prevents dissociation of the ferrous–dioxygen complex. Under these conditions, eNOS does not generate superoxide. The presence of flavins, at concentrations commonly employed in NOS assay systems, enhances superoxide generation from the reductase domain. Our data indicate that modulation of BH 4 concentration may regulate the ratio of superoxide to nitric oxide generated by eNOS.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Oxygen reduction by nitric-oxide synthases.

                Bookmark

                Author and article information

                Journal
                Cardiovascular Research
                Cardiovascular Research
                Elsevier BV
                0008-6363
                June 01 2002
                June 01 2002
                : 54
                : 3
                : 649-658
                Article
                10.1016/S0008-6363(02)00266-3
                5a082723-9f53-4138-a9b1-551ecf3637bc
                © 2002
                History

                Comments

                Comment on this article