20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidative stress develops as a response to injury and reflects a breach in the cell’s antioxidant capacity. Therefore, the fine-tuning of reactive oxygen species (ROS) generation is crucial for preserving cell’s homeostasis. Mitochondria are a major source and an immediate target of ROS. Under different stimuli, including oxidative stress and impaired quality control, mitochondrial constituents (e.g., mitochondrial DNA, mtDNA) are displaced toward intra- or extracellular compartments. However, the mechanisms responsible for mtDNA unloading remain largely unclear. While shuttling freely within the cell, mtDNA can be delivered into the extracellular compartment via either extrusion of entire nucleoids or the generation and release of extracellular vesicles. Once discarded, mtDNA may act as a damage-associated molecular pattern (DAMP) and trigger an innate immune inflammatory response by binding to danger-signal receptors. Neuroinflammation is associated with a large array of neurological disorders for which mitochondrial DAMPs could represent a common thread supporting disease progression. The exploration of non-canonical pathways involved in mitochondrial quality control and neurodegeneration may unveil novel targets for the development of therapeutic agents. Here, we discuss these processes in the setting of two common neurodegenerative diseases (Alzheimer’s and Parkinson’s disease) and Down syndrome, the most frequent progeroid syndrome.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroinflammation: the devil is in the details.

          There is significant interest in understanding inflammatory responses within the brain and spinal cord. Inflammatory responses that are centralized within the brain and spinal cord are generally referred to as 'neuroinflammatory'. Aspects of neuroinflammation vary within the context of disease, injury, infection, or stress. The context, course, and duration of these inflammatory responses are all critical aspects in the understanding of these processes and their corresponding physiological, biochemical, and behavioral consequences. Microglia, innate immune cells of the CNS, play key roles in mediating these neuroinflammatory responses. Because the connotation of neuroinflammation is inherently negative and maladaptive, the majority of research focus is on the pathological aspects of neuroinflammation. There are, however, several degrees of neuroinflammatory responses, some of which are positive. In many circumstances including CNS injury, there is a balance of inflammatory and intrinsic repair processes that influences functional recovery. In addition, there are several other examples where communication between the brain and immune system involves neuroinflammatory processes that are beneficial and adaptive. The purpose of this review is to distinguish different variations of neuroinflammation in a context-specific manner and detail both positive and negative aspects of neuroinflammatory processes. In this review, we will use brain and spinal cord injury, stress, aging, and other inflammatory events to illustrate the potential harm and benefits inherent to neuroinflammation. Context, course, and duration of the inflammation are highly important to the interpretation of these events, and we aim to provide insight into this by detailing several commonly studied insults. This article is part of the 60th anniversary supplemental issue.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial DNA That Escapes from Autophagy Causes Inflammation and Heart Failure

            Heart failure is a leading cause of morbidity and mortality in industrialized countries. Although infection with microorganisms is not involved in the development of heart failure in most cases, inflammation has been implicated in the pathogenesis of heart failure 1 . However, the mechanisms responsible for initiating and integrating inflammatory responses within the heart remain poorly defined. Mitochondria are evolutionary endosymbionts derived from bacteria and contain DNA similar to bacterial DNA 2,3,4 . Mitochondria damaged by external hemodynamic stress are degraded by the autophagy/lysosome system in cardiomyocytes 5 . Here, we show that mitochondrial DNA that escapes from autophagy cell-autonomously leads to Toll-like receptor (TLR) 9-mediated inflammatory responses in cardiomyocytes and is capable of inducing myocarditis, and dilated cardiomyopathy. Cardiac-specific deletion of lysosomal deoxyribonuclease (DNase) II showed no cardiac phenotypes under baseline conditions, but increased mortality and caused severe myocarditis and dilated cardiomyopathy 10 days after treatment with pressure overload. Early in the pathogenesis, DNase II-deficient hearts exhibited infiltration of inflammatory cells and increased mRNA expression of inflammatory cytokines, with accumulation of mitochondrial DNA deposits in autolysosomes in the myocardium. Administration of the inhibitory oligodeoxynucleotides against TLR9, which is known to be activated by bacterial DNA 6 , or ablation of Tlr9 attenuated the development of cardiomyopathy in DNase II-deficient mice. Furthermore, Tlr9-ablation improved pressure overload-induced cardiac dysfunction and inflammation even in mice with wild-type Dnase2a alleles. These data provide new perspectives on the mechanism of genesis of chronic inflammation in failing hearts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new pathway for mitochondrial quality control: mitochondrial-derived vesicles.

              The last decade has been marked by tremendous progress in our understanding of the cell biology of mitochondria, with the identification of molecules and mechanisms that regulate their fusion, fission, motility, and the architectural transitions within the inner membrane. More importantly, the manipulation of these machineries in tissues has provided links between mitochondrial dynamics and physiology. Indeed, just as the proteins required for fusion and fission were identified, they were quickly linked to both rare and common human diseases. This highlighted the critical importance of this emerging field to medicine, with new hopes of finding drugable targets for numerous pathologies, from neurodegenerative diseases to inflammation and cancer. In the midst of these exciting new discoveries, an unexpected new aspect of mitochondrial cell biology has been uncovered; the generation of small vesicular carriers that transport mitochondrial proteins and lipids to other intracellular organelles. These mitochondrial-derived vesicles (MDVs) were first found to transport a mitochondrial outer membrane protein MAPL to a subpopulation of peroxisomes. However, other MDVs did not target peroxisomes and instead fused with the late endosome, or multivesicular body. The Parkinson's disease-associated proteins Vps35, Parkin, and PINK1 are involved in the biogenesis of a subset of these MDVs, linking this novel trafficking pathway to human disease. In this review, we outline what has been learned about the mechanisms and functional importance of MDV transport and speculate on the greater impact of these pathways in cellular physiology. © 2014 The Authors.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                22 July 2020
                August 2020
                : 9
                : 8
                : 647
                Affiliations
                [1 ]Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; anna.picca@ 123456guest.policlinicogemelli.it (A.P.); francesco.landi@ 123456unicatt.it (F.L.); emanuele.marzetti@ 123456policlinicogemelli.it (E.M.)
                [2 ]Università Cattolica del Sacro Cuore, 00168 Rome, Italy; coelhojunior@ 123456hotmail.com.br
                Author notes
                [* ]Correspondence: riccardo.calvani@ 123456guest.policlinicogemelli.it (R.C.); Roberto.Bernabei@ 123456unicatt.it (R.B.); Tel.: +39-06-3015-5559 (R.C. & R.B.); Fax: +39-06-3051-911 (R.C. & R.B.)
                Author information
                https://orcid.org/0000-0001-7032-3487
                https://orcid.org/0000-0001-7482-9514
                https://orcid.org/0000-0001-9567-6983
                Article
                antioxidants-09-00647
                10.3390/antiox9080647
                7466131
                32707949
                5a607e6c-8514-4010-ae9b-362f14fcd115
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 July 2020
                : 21 July 2020
                Categories
                Review

                alzheimer’s disease,cytokines,damps,down syndrome,endo-lysosomal system,extracellular vesicles,mitochondrial dna,mitochondrial quality control,mitophagy,parkinson’s disease

                Comments

                Comment on this article