15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Statistical Analysis of Zebrafish Locomotor Response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling’s T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling’s T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Modulation of locomotor activity in larval zebrafish during light adaptation.

          The neural basis of behavioral choice in vertebrates remains largely unknown. Zebrafish larvae have a defined locomotor repertoire as well as a simple nervous system and are therefore an attractive vertebrate system in which to study this process. Here we describe a high-throughput system for quantifying the kinematics of motor events in zebrafish larvae in order to measure the initiation frequency of different maneuvers. We use this system to analyze responses to photic stimuli and find that larvae respond to changes in illumination with both acute responses and extended behavioral programs. Reductions in illumination elicit large angle turns, distinct from startle responses, which orient larvae toward the source of light. In continuing darkness, larvae are transiently hyperactive before adopting a quiescent state. Indeed, locomotor activity is controlled by the state of light or dark adaptation similar to masking phenomena in higher vertebrates where light directly regulates motor activity. We propose that regulation of motor activity by photic stimuli in zebrafish larvae serves a behavioral goal of maximizing exposure to well lit environments optimal for feeding.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid behavior—based identification of neuroactive small molecules in the zebrafish

            Neuroactive small molecules are indispensable tools for treating mental illnesses and dissecting nervous system function. However, it has been difficult to discover novel neuroactive drugs. Here, we describe a high—throughput (HT) behavior—based approach to neuroactive small molecule discovery in the zebrafish. We use automated screening assays to evaluate thousands of chemical compounds and find that diverse classes of neuroactive molecules cause distinct patterns of behavior. These `behavioral barcodes' can be used to rapidly identify novel psychotropic chemicals and to predict their molecular targets. For example, we identify novel acetylcholinesterase and monoamine oxidase inhibitors using phenotypic comparisons and computational techniques. By combining HT screening technologies with behavioral phenotyping in vivo, behavior—based chemical screens may accelerate the pace of neuroactive drug discovery and provide small—molecule tools for understanding vertebrate behavior.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish.

              As many as 10% of humans suffer chronic sleep disturbances, yet the genetic mechanisms that regulate sleep remain essentially unknown. It is therefore crucial to develop simple and cost-effective vertebrate models to study the genetic regulation of sleep. The best characterized mammalian sleep/wake regulator is hypocretin/orexin (Hcrt), whose loss results in the sleep disorder narcolepsy and that has also been implicated in feeding behavior, energy homeostasis, thermoregulation, reward seeking, addiction, and maternal behavior. Here we report that the expression pattern and axonal projections of embryonic and larval zebrafish Hcrt neurons are strikingly similar to those in mammals. We show that zebrafish larvae exhibit robust locomotive sleep/wake behaviors as early as the fifth day of development and that Hcrt overexpression promotes and consolidates wakefulness and inhibits rest. Similar to humans with insomnia, Hcrt-overexpressing larvae are hyperaroused and have dramatically reduced abilities to initiate and maintain rest at night. Remarkably, Hcrt function is modulated by but does not require normal circadian oscillations in locomotor activity. Our zebrafish model of Hcrt overexpression indicates that the ancestral function of Hcrt is to promote locomotion and inhibit rest and will facilitate the discovery of neural circuits, genes, and drugs that regulate Hcrt function and sleep.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                5 October 2015
                2015
                : 10
                : 10
                : e0139521
                Affiliations
                [1 ]Department of Statistics, University of Georgia, Athens, Georgia, United States of America
                [2 ]Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
                [3 ]Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
                [4 ]Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong, China
                [5 ]Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
                [6 ]Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, Indiana, United States of America
                National Institutes of Health / NICHD, UNITED STATES
                Author notes

                Competing Interests: Yuk Fai Leung is a PLOS ONE Editorial Board member. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: YL RC CPP MZ PM YFL. Performed the experiments: YL RC GZ PV SAB YFL. Analyzed the data: YL RC PM YFL. Wrote the paper: YL RC PM YFL.

                Article
                PONE-D-15-26430
                10.1371/journal.pone.0139521
                4593604
                26437184
                5ad90023-da5b-4902-ad64-94a0ec36befe
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 16 June 2015
                : 13 September 2015
                Page count
                Figures: 6, Tables: 9, Pages: 25
                Funding
                Robert Carmer was partially supported by a Howard Hughes Medical Institute Undergraduate Research Experience Program from Purdue University. Gaonan Zhang was partially supported by a William H. Phillips Summer Research Internship from Purdue University. Prahatha Venkatraman was partially supported by a Faculty for the Future Fellowship by the Schlumberger Foundation. Chi Pui Pang was partially supported by a Direct grant (Grant No. 2041771) from the Medical Panel, The Chinese University of Hong Kong, and a General Research Fund (Grant No. 2140694) from the Research Grants Council of Hong Kong. Mingzhi Zhang was partially supported by the National Scientific Foundation of China (Grant No. 81486126), the Provincial Natural Scientific Foundation of China (Grant No. 8151503102000019), and the Ministry of Health program of Public Welfare (Grant No. 201302015). Ping Ma and Yiwen Liu were partially supported by National Science Foundation (Grant No. DMS-1440037, 1440038, 1438957). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All data are available at the Harvard Dataverse ( http://dx.doi.org/10.7910/DVN/HTXXKW).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article