2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pharmacological characterization of diethyl-2-({3-dimethylcarbamoyl-4-[(4'-trifluoromethylbiphenyl-2-carbonyl)amino]phenyl}acetyloxymethyl)-2-phenylmalonate (JTT-130), an intestine-specific inhibitor of microsomal triglyceride transfer protein.

      The Journal of pharmacology and experimental therapeutics
      American Society for Pharmacology & Experimental Therapeutics (ASPET)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inhibitors of microsomal triglyceride transfer protein (MTP) expressed in the liver and small intestine are potential candidates for lipid-lowering agents. However, inhibition of hepatic MTP could lead to significant safety issues such as fatty liver disease. To develop a specific inhibitor of intestinal MTP, JTT-130 [diethyl-2-({3-dimethylcarbamoyl-4-[(4'-trifluoromethylbiphenyl-2-carbonyl)amino]phenyl}acetyloxymethyl)-2-phenylmalonate], was designed to be rapidly hydrolyzed in the absorption process. Here, we describe JTT-130, an intestine-specific MTP inhibitor, and evaluate its pharmacological properties. In in vitro metabolic stability tests, JTT-130 was readily hydrolyzed during incubation with liver S9 from humans, hamsters, and rats. In an in vitro triglyceride (TG) transfer assay with human intestinal MTP, JTT-130 potently inhibited TG transfer activity with an IC(50) value of 0.83 nM. When orally administered to hamsters, JTT-130 significantly suppressed an increase in chylomicron-TG after olive oil loading at 0.3 mg/kg and above but did not inhibit TG secretion from the liver at doses of up to 1000 mg/kg, indicating an inhibitory action highly specific for the small intestine. In rats orally administered [(14)C]triolein, JTT-130 potently suppressed an increase in blood (14)C radioactivity and increased (14)C radioactivity in the upper small intestine and the intestinal lumen. In hyperlipidemic hamsters fed a high-fat and high-cholesterol diet, repeated dosing with JTT-130 for 2 weeks reduced TG and cholesterol levels in the plasma and TG content in the liver. These results indicated that JTT-130 is a potent inhibitor specific to intestinal MTP and suggested that JTT-130 would be a useful compound for the treatment of dyslipidemia without inducing hepatotoxicity.

          Related collections

          Author and article information

          Journal
          20974698
          10.1124/jpet.110.173807

          Comments

          Comment on this article

          scite_