39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome Analysis of Resistant and Susceptible Alfalfa Cultivars Infected With Root-Knot Nematode Meloidogyne incognita

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nematodes are one of the major limiting factors in alfalfa production. Root-knot nematodes (RKN, Meloidogyne spp.) are widely distributed and economically important sedentary endoparasites of agricultural crops and they may inflict significant damage to alfalfa fields. As of today, no studies have been published on global gene expression profiling in alfalfa infected with RKN or any other plant parasitic nematode. Very little information is available about molecular mechanisms that contribute to pathogenesis and defense responses in alfalfa against these pests and specifically against RKN. In this work, we performed root transcriptome analysis of resistant (cv. Moapa 69) and susceptible (cv. Lahontan) alfalfa cultivars infected with RKN Meloidogyne incognita, widespread root-knot nematode species and a major pest worldwide. A total of 1,701,622,580 pair-end reads were generated on an Illumina Hi-Seq 2000 platform from the roots of both cultivars and assembled into 45,595 and 47,590 transcripts in cvs Moapa 69 and Lahontan, respectively. Bioinformatic analysis revealed a number of common and unique genes that were differentially expressed in susceptible and resistant lines as a result of nematode infection. Although the susceptible cultivar showed a more pronounced defense response to the infection, feeding sites were successfully established in its roots. Characteristically, basal gene expression levels under normal conditions differed between the two cultivars as well, which may confer advantage to one of the genotypes toward resistance to nematodes. Differentially expressed genes were subsequently assigned to known Gene Ontology categories to predict their functional roles and associated biological processes. Real-time PCR validated expression changes in genes arbitrarily selected for experimental confirmation. Candidate genes that contribute to protection against M. incognita in alfalfa were proposed and alfalfa-nematode interactions with respect to resistance are discussed.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          The C-type lectin-like domain superfamily.

          The superfamily of proteins containing C-type lectin-like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions. The CTLD structure has a characteristic double-loop ('loop-in-a-loop') stabilized by two highly conserved disulfide bridges located at the bases of the loops, as well as a set of conserved hydrophobic and polar interactions. The second loop, called the long loop region, is structurally and evolutionarily flexible, and is involved in Ca2+-dependent carbohydrate binding and interaction with other ligands. This loop is completely absent in a subset of CTLDs, which we refer to as compact CTLDs; these include the Link/PTR domain and bacterial CTLDs. CTLD-containing proteins (CTLDcps) were originally classified into seven groups based on their overall domain structure. Analyses of the superfamily representation in several completely sequenced genomes have added 10 new groups to the classification, and shown that it is applicable only to vertebrate CTLDcps; despite the abundance of CTLDcps in the invertebrate genomes studied, the domain architectures of these proteins do not match those of the vertebrate groups. Ca2+-dependent carbohydrate binding is the most common CTLD function in vertebrates, and apparently the ancestral one, as suggested by the many humoral defense CTLDcps characterized in insects and other invertebrates. However, many CTLDs have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade-specific snake venoms, and fish antifreeze and bird egg-shell proteins. Recent studies highlight the functional versatility of this protein superfamily and the CTLD scaffold, and suggest further interesting discoveries have yet to be made.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens.

            Most apomictic root-knot nematodes (RKN; Meloidogyne spp.) have host ranges that encompass the majority of flowering plants, and M. incognita is possibly the world's most damaging crop pathogen. The ancestors, age, and origins of the polyphagous RKN are obscure, but there is increasing evidence that M. incognita, M. javanica, and M. arenaria are closely related, heterogeneous species with a recent, hybrid (reticulate) origin. If so, they must owe much of their current worldwide distributions to spread by agriculture. Host resistance appears to be generally durable in the field, but laboratory studies suggest that apomixis does not prevent evolution in response to selection by a parasitic bacterium (Pasteuria penetrans) and host resistance. Maintaining general fitness may be the evolutionary priority for most populations of polyphagous RKN, and a wide host range, important in the field but not in the laboratory, may be conserved by apomixis. Several factors may help confer a wide host range, including suppression of host resistance, perhaps as a consequence of the strength of the induced susceptible response. Resistance genes effective against RKN appear not to have resulted from coevolution. Rates of juvenile invasion and/or development are low in many wild and some crop plants, with the result that they are both poor hosts and sustain less damage. Overall, it is suggested that greater coordination, particularly of fundamental research, is required.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Combining Transcriptome Assemblies from Multiple De Novo Assemblers in the Allo-Tetraploid Plant Nicotiana benthamiana

              Background Nicotiana benthamiana is an allo-tetraploid plant, which can be challenging for de novo transcriptome assemblies due to homeologous and duplicated gene copies. Transcripts generated from such genes can be distinct yet highly similar in sequence, with markedly differing expression levels. This can lead to unassembled, partially assembled or mis-assembled contigs. Due to the different properties of de novo assemblers, no one assembler with any one given parameter space can re-assemble all possible transcripts from a transcriptome. Results In an effort to maximise the diversity and completeness of de novo assembled transcripts, we utilised four de novo transcriptome assemblers, TransAbyss, Trinity, SOAPdenovo-Trans, and Oases, using a range of k-mer sizes and different input RNA-seq read counts. We complemented the parameter space biologically by using RNA from 10 plant tissues. We then combined the output of all assemblies into a large super-set of sequences. Using a method from the EvidentialGene pipeline, the combined assembly was reduced from 9.9 million de novo assembled transcripts to about 235,000 of which about 50,000 were classified as primary. Metrics such as average bit-scores, feature response curves and the ability to distinguish paralogous or homeologous transcripts, indicated that the EvidentialGene processed assembly was of high quality. Of 35 RNA silencing gene transcripts, 34 were identified as assembled to full length, whereas in a previous assembly using only one assembler, 9 of these were partially assembled. Conclusions To achieve a high quality transcriptome, it is advantageous to implement and combine the output from as many different de novo assemblers as possible. We have in essence taking the ‘best’ output from each assembler while minimising sequence redundancy. We have also shown that simultaneous assessment of a variety of metrics, not just focused on contig length, is necessary to gauge the quality of assemblies.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                24 February 2015
                2015
                : 10
                : 2
                : e0118269
                Affiliations
                [1 ]USDA-ARS, Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
                [2 ]USDA-ARS, Beltsville Agricultural Research Center, Nematology Laboratory, Beltsville, Maryland, United States of America
                James Hutton Institute, UNITED KINGDOM
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: OAP LGN. Performed the experiments: OAP MH LGN. Analyzed the data: OAP JS LGN. Wrote the paper: LGN OAP MH AS.

                Article
                PONE-D-14-44027
                10.1371/journal.pone.0118269
                4339843
                25710378
                5b107fda-2537-40f5-8e59-3f1125415904

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication

                History
                : 30 September 2014
                : 12 January 2015
                Page count
                Figures: 3, Tables: 3, Pages: 17
                Funding
                This work was supported by the United States Department of Agriculture, Agricultural Research Service. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article