0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Insulin-like growth factor-II gene expression in a rat insulin-producing beta-cell line (INS-1) is regulated by glucose.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A highly differentiated rat glucose-responsive insulin producing cell line INS-1 expresses high levels of insulin-like growth factor-II (IGF-II). Basal levels of IGF-II gene mRNA were expressed in cells cultured at 1-6 mmol/l glucose. At glucose concentrations of 10-20 mmol/l, IGF-II mRNA was increased more than threefold after 44 h of incubation. Levels of IGF-II mRNA in INS-1 cells incubated at 5.6 and 20 mmol/l glucose in the presence of 4 micrograms/ml actinomycin D are comparable and are not reduced during 20 h of treatment, indicating the high stability of IGF-II mRNA in this cell line. From the three rat IGF-II promoters, promoter 3 is by far the most active in INS-1 cells. The IGF-II promoter 3 activity and IGF-II mRNA production at high glucose concentrations increased threefold over their respective levels at low glucose concentration, suggesting that the glucose-induced IGF-II gene expression in this beta-cell line might be transcriptionally controlled. The up-regulation of IGF-II mRNA by glucose was not due to the increased intracellular cyclic AMP levels or protein kinase C activation. A protein kinase C activator had no effect on IGF-II gene expression, and an adenylate cyclase activator (forskolin), suppressed the stimulatory effects of glucose on the IGF-II mRNA. Under all the experimental conditions examined, the IGF-II and insulin genes were differentially regulated in INS-1 cells. The IGF-II gene expression and DNA synthesis, however, were regulated in parallel, suggesting that these two cellular activities are closely associated.

          Related collections

          Author and article information

          Journal
          Diabetologia
          Diabetologia
          Springer Science and Business Media LLC
          0012-186X
          0012-186X
          Aug 1995
          : 38
          : 8
          Affiliations
          [1 ] INSERM CJF-9313, Hôpital Robert Debré, Paris, France.
          Article
          10.1007/BF00400581
          7589878
          5b2ffa78-210b-40f2-af60-a850c5e686ce
          History

          Comments

          Comment on this article