26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From Precocious Puberty to Infertility: Metabolic Control of the Reproductive Function

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reproduction is calorically expensive. The energy demands of mate seeking, gamete production, pregnancy, and lactation require increased food consumption and appropriate regulation of energy expenditure. Therefore, control of the reproductive function by the brain must be responsive to the metabolic state of the animal. Conversely, when survival is threatened by insufficient fuels or increased energy demands, males and females of most species divert energy away from reproduction by reducing copulatory motivation and behavior, halting ovulation, terminating pregnancies, or ceasing lactation. In addition, when prepubertal animals, including humans, are exposed to energy deprivation, the onset of puberty is delayed or even blocked, until a favorable energy balance is achieved. These mechanisms serve to optimize reproductive success in environments where energy availability fluctuates. Recent studies suggest that excess body fat can trigger early onset of puberty, especially in females. In males, on the other hand, the prevalence of delayed puberty is about fivefold higher than in females, indicating sexual dimorphism in the sensitivity of the reproductive axis to metabolic cues. Understanding the interaction between energy balance and fertility has critical implications for the treatment reproductive deficits caused by metabolic dysfunction. Given the involvement of the hypothalamus in the management of food intake, energy use, reproductive behavior, and the hormonal control of gametogenesis and ovulation, ongoing studies are focused on the interplay between the hypothalamic circuits driving these functions. Gonadotropin releasing hormone (GnRH) neurons are specialized neurons often described as the “master regulators” of the hypothalamus-pituitary-gonads (HPG) axis. The intermittent release of GnRH controls pituitary release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) and, by extension, function of the gonads. Surprisingly, few GnRH neurons are sufficient to initiate puberty in males and females and to maintain fertility in the male. However, more are required for females to generate LH surges and ovulate. These additional GnRH neurons may modulate GnRH pulsatility in response to environmental, nutrition, stress, or other cues conveying adverse situations. However, GnRH neurons on their own seem to sense few metabolic cues. Instead, neighboring neurons and glia may perceive circulating factors, such as leptin, insulin, and ghrelin that serve as signals of the nutritional state of the individual. If these cells are not able to sense metabolic cues, for example in states of insulin or leptin resistance, the repercussions may include both imbalanced metabolic homeostasis and reproductive dysfunction. Indeed, leptin-deficient patients become hyperphagic, massively obese, and infertile. This eBook has assembled multidisciplinary specialists to provide up-to-date information on recent advances in understanding the complex physiologic interaction between metabolism and reproduction. In the initial article, True et al. (2011) discuss the role of the adipocyte hormone leptin as a key metabolic signal and predominant focus of interest in the field. In their review, it is emphasized that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. Schneider et al. (2012) call attention to the “metabolic hypothesis,” which predicts that sensory systems monitor the availability of oxidizable metabolic fuels and allow behavioral responses to optimize reproductive success. Following these provocative introductory articles, three reviews discuss the role of specific groups of neurons in this physiologic regulation. Bianco (2012) highlights the Kisspeptin system as the converging target of environmental, metabolic, and hormonal signals, and proposes a potential correlation between the existence of a sexual dimorphism of pubertal disorders in children of different ethnicities and the sexually dimorphic expression of kisspeptin neurons. Supported by recent genetic studies, Xu et al. (2012) focused their review on two sets of hypothalamic neurons: the pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and the steroidogenic factor-1 (SF1) neurons in the ventromedial hypothalamic nucleus. Their discussion calls attention to exciting new findings showing that disruption of metabolic signals (e.g., leptin and insulin) or reproductive signals (e.g., estradiol) in these neurons leads to impaired regulation of both energy homeostasis and fertility. Donato and Elias (2011) discuss the role of the ventral premammillary nucleus as integrator of environmental, metabolic, and reproductive cues, and its emergence as a critical previously unrecognized hypothalamic site linking metabolism and reproduction. Acosta-Martínez (2012) proposes a role for phosphatidylinositol-3-kinase (PI3K) signaling pathway as potential integrator of a number of peripheral metabolic cues, including insulin and leptin, in the metabolic control of the reproductive function. Tolson and Chappell (2012) offer an insightful discussion on pubertal timing, outlining a potential role of endogenous timing mechanisms including cellular circadian clocks in pubertal initiation. They propose that these clocks may be altered by metabolic factors leading to reproductive deficits. In a provocative review, Clasadonte et al. (2011) discuss the action of non-neuronal components in GnRH regulation. They suggest that synaptically associated astrocytes and perijunctional tanycytes are integral modulatory elements of GnRH neuronal function at the cell soma/dendrite and terminal levels. Finally, two important articles call the attention to differences in the metabolic modulation of the reproductive physiology in different species. Klingerman et al. (2011) highlight the metabolic influence on sexual behavior, and food intake or food hoarding in hamsters, and suggest a role for neuropeptide Y (NPY) and gonadotropin inhibiting hormone (GnIH) expressing cells in these processes. Amstalden et al. (2011) emphasize observations made in ruminant species in a very welcome comparative perspective. Clearly, research examining the metabolic control of reproduction is advancing at a rapid pace. The articles in this eBook highlight some of the most critical and intriguing areas for future study.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Gliotransmission by Prostaglandin E2: A Prerequisite for GnRH Neuronal Function?

          Over the past four decades it has become clear that prostaglandin E2 (PGE2), a phospholipid-derived signaling molecule, plays a fundamental role in modulating the gonadotropin-releasing hormone (GnRH) neuroendocrine system and in shaping the hypothalamus. In this review, after a brief historical overview, we highlight studies revealing that PGE2 released by glial cells such as astrocytes and tanycytes is intimately involved in the active control of GnRH neuronal activity and neurosecretion. Recent evidence suggests that hypothalamic astrocytes surrounding GnRH neuronal cell bodies may respond to neuronal activity with an activation of the erbB receptor tyrosine kinase signaling, triggering the release of PGE2 as a chemical transmitter from the glia themselves, and, in turn, leading to the feedback regulation of GnRH neuronal activity. At the GnRH neurohemal junction, in the median eminence of the hypothalamus, PGE2 is released by tanycytes in response to cell–cell signaling initiated by glial cells and vascular endothelial cells. Upon its release, PGE2 causes the retraction of the tanycyte end-feet enwrapping the GnRH nerve terminals, enabling them to approach the adjacent pericapillary space and thus likely facilitating neurohormone diffusion from these nerve terminals into the pituitary portal blood. In view of these new insights, we suggest that synaptically associated astrocytes and perijunctional tanycytes are integral modulatory elements of GnRH neuronal function at the cell soma/dendrite and nerve terminal levels, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Food Restriction-Induced Changes in Gonadotropin-Inhibiting Hormone Cells are Associated with Changes in Sexual Motivation and Food Hoarding, but not Sexual Performance and Food Intake

            We hypothesized that putative anorectic and orexigenic peptides control the motivation to engage in either ingestive or sex behaviors, and these peptides function to optimize reproductive success in environments where energy fluctuates. Here, the putative orexigenic peptide, gonadotropin-inhibiting hormone (GnIH, also known as RFamide-related peptide-3), and the putative anorectic hormones leptin, insulin, and estradiol were examined during the course of food restriction. Groups of female Syrian hamsters were restricted to 75% of their ad libitum food intake or fed ad libitum for 4, 8, or 12 days. Two other groups were food-restricted for 12 days and then re-fed ad libitum for 4 or 8 days. After testing for sex and ingestive behavior, blood was sampled and assayed for peripheral hormones. Brains were immunohistochemically double-labeled for GnIH and the protein product of the immediate early gene, c-fos, a marker of cellular activation. Food hoarding, the number of double-labeled cells, and the percent of GnIH-Ir cells labeled with Fos-Ir were significantly increased at 8 and 12 days after the start of food restriction. Vaginal scent marking and GnIH-Ir cell number significantly decreased after the same duration of restriction. Food hoarding, but not food intake, was significantly positively correlated with cellular activation in GnIH-Ir cells. Vaginal scent marking was significantly negatively correlated with cellular activation in GnIH-Ir cells. There were no significant effects of food restriction on plasma insulin, leptin, estradiol, or progesterone concentrations. In the dorsomedial hypothalamus (DMH) of energetically challenged females, strong projections from NPY-Ir cells were found in close apposition to GnIH-Ir cells. Together these results are consistent with the idea that metabolic signals influence sexual and ingestive motivation via NPY fibers that project to GnIH cells in the DMH.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              PI3K: An Attractive Candidate for the Central Integration of Metabolism and Reproduction

              In neurons, as in a variety of other cell types, the enzyme phosphatidylinositol-3-kinase (PI3K) is a key intermediate that is common to the signaling pathways of a number of peripheral metabolic cues, including insulin and leptin, which are well known to regulate both metabolic and reproductive functions. This review article will explore the possibility that PI3K is a key integrator of metabolic and neural signals regulating gonadotropin releasing hormone (GnRH)/luteinizing hormone (LH) release and explore the hypothesis that this enzyme is pivotal in many disorders where gonadotropin release is at risk. Although the mechanisms mediating the influence of metabolism and nutrition on fertility are currently unclear, the strong association between metabolic disorders and infertility is undeniable. For example, women suffering from anorectic disorders experience amenorrhea as a consequence of malnutrition-induced impairment of LH release, and at the other extreme, obesity is also commonly co-morbid with menstrual dysfunction and infertility. Impaired hypothalamic insulin and leptin receptor signaling is thought to be at the core of reproductive disorders associated with metabolic dysfunction. While low levels of leptin and insulin characterize states of negative energy balance, prolonged nutrient excess is associated with insulin and leptin resistance. Metabolic models known to alter GnRH/LH release such as diabetes, diet-induced obesity, and caloric restriction are also accompanied by impairment of PI3K signaling in insulin and leptin sensitive tissues including the hypothalamus. However, a clear link between this signaling pathway and the control of GnRH release by peripheral metabolic cues has not been established. Investigating the role of the signaling pathways shared by metabolic cues that are critical for a normal reproductive state can help identify possible targets in the treatment of metabolic and reproductive disorders such as polycystic ovarian syndrome.
                Bookmark

                Author and article information

                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                02 April 2013
                2013
                : 4
                : 43
                Affiliations
                [1] 1Department of Physiology and Pharmacology, University of Toledo Toledo, OH, USA
                [2] 2Department of Obstetrics and Gynecology, University of Toledo Toledo, OH, USA
                [3] 3Department of Psychiatry, Yale University New Haven, CT, USA
                [4] 4Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
                Author notes

                Edited by: Justo P. Castaño, University of Cordoba and Maimonides Biomedical Research Institute, Spain

                Reviewed by: Justo P. Castaño, University of Cordoba and Maimonides Biomedical Research Institute, Spain

                *Correspondence: cfelias@ 123456umich.edu

                This article was submitted to Frontiers in Systems and Translational Endocrinology, a specialty of Frontiers in Endocrinology.

                Article
                10.3389/fendo.2013.00043
                3613725
                23565110
                5bad3f1c-9a8b-4fe7-91b2-d32b97f57ba6
                Copyright © 2013 Hill, Alreja and Elias.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 06 March 2013
                : 16 March 2013
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 10, Pages: 2, Words: 1403
                Categories
                Endocrinology
                Editorial

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article