11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.

      1 , ,
      ACS applied materials & interfaces

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The paper deals with the fabrication of sol-gel-derived superhydrophobic films on glass based on the macroscopic silica network with surface modification. The fabricated transparent films were composed of a hybrid -Si(CH(3))(3)-functionalized SiO(2) nanospheres exhibiting the desired micro/nanostructure, water repellency, and antireflection (AR) property. The wavelength selective AR property can be tuned by controlling the physical thickness of the films. Small-angle X-ray scattering (SAXS) studies revealed the existence of SiO(2) nanoparticles of average size ∼9.4 nm in the sols. TEM studies showed presence of interconnected SiO(2) NPs of ∼10 nm in size. The films were formed with uniformly packed SiO(2) aggregates as observed by FESEM of film surface. FTIR of the films confirmed presence of glasslike Si-O-Si bonding and methyl functionalization. The hydrophobicity of the surface was depended on the thickness of the deposited films. A critical film thickness (>115 nm) was necessary to obtain the air push effect for superhydrophobicity. Trimethylsilyl functionalization of SiO(2) and the surface roughness (rms ≈30 nm as observed by AFM) of the films were also contributed toward the high water contact angle (WCA). The coated glass surface showed WCA value of the droplet as high as 168 ± 3° with 6 μL of water. These superhydrophobic films were found to be stable up to about 230-240 °C as confirmed by TG/DTA studies, and WCA measurements of the films with respect to the heat-treatment temperatures. These high water repellant films can be deposited on relatively large glass surfaces to remove water droplets immediately without any mechanical assistance.

          Related collections

          Author and article information

          Journal
          ACS Appl Mater Interfaces
          ACS applied materials & interfaces
          1944-8252
          1944-8244
          Sep 2011
          : 3
          : 9
          Affiliations
          [1 ] Nano-Structured Materials Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research, 196 Raja S. C. Mullick Road, Kolkata 700032, India.
          Article
          10.1021/am200666m
          21823656
          5bd78130-2aea-4c8f-a279-e009e16ac1ed
          History

          Comments

          Comment on this article