7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Losses Motivate Cognitive Effort More Than Gains in Effort-Based Decision Making and Performance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human behavior is more strongly driven by the motivation to avoid losses than to pursue gains (loss aversion). However, there is little research on how losses influence the motivation to exert effort. We compared the effects of loss and gain incentives on cognitive task performance and effort-based decision making. In three experiments, participants performed a cognitively effortful task under gain and loss conditions and made choices about effort expenditure in a decision-making task. Results consistently showed significant loss aversion in effort-based decision making. Participants were willing to invest more effort in the loss compared to the gain condition (i.e., perform a longer duration task: Experiments 1 and 2; or higher task load: Experiment 3). On the other hand, losses did not lead to improved performance (sustained attention), or higher physiological effort (pupil diameter) in Experiments 1 and 2. In Experiment 3, losses did enhance working memory performance, but only at the highest load level. Taken together, these results suggest that loss aversion motivates higher effort investment in effort-based decision-making, while the effect of loss aversion during a performance may depend on the task type or effort level.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          The neural basis of loss aversion in decision-making under risk.

          People typically exhibit greater sensitivity to losses than to equivalent gains when making decisions. We investigated neural correlates of loss aversion while individuals decided whether to accept or reject gambles that offered a 50/50 chance of gaining or losing money. A broad set of areas (including midbrain dopaminergic regions and their targets) showed increasing activity as potential gains increased. Potential losses were represented by decreasing activity in several of these same gain-sensitive areas. Finally, individual differences in behavioral loss aversion were predicted by a measure of neural loss aversion in several regions, including the ventral striatum and prefrontal cortex.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Motivation and cognitive control: from behavior to neural mechanism.

            Research on cognitive control and executive function has long recognized the relevance of motivational factors. Recently, however, the topic has come increasingly to center stage, with a surge of new studies examining the interface of motivation and cognitive control. In the present article we survey research situated at this interface, considering work from cognitive and social psychology and behavioral economics, but with a particular focus on neuroscience research. We organize existing findings into three core areas, considering them in the light of currently vying theoretical perspectives. Based on the accumulated evidence, we advocate for a view of control function that treats it as a domain of reward-based decision making. More broadly, we argue that neuroscientific evidence plays a critical role in understanding the mechanisms by which motivation and cognitive control interact. Opportunities for further cross-fertilization between behavioral and neuroscientific research are highlighted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Decision making and the avoidance of cognitive demand.

              Behavioral and economic theories have long maintained that actions are chosen so as to minimize demands for exertion or work, a principle sometimes referred to as the law of less work. The data supporting this idea pertain almost entirely to demands for physical effort. However, the same minimization principle has often been assumed also to apply to cognitive demand. The authors set out to evaluate the validity of this assumption. In 6 behavioral experiments, participants chose freely between courses of action associated with different levels of demand for controlled information processing. Together, the results of these experiments revealed a bias in favor of the less demanding course of action. The bias was obtained across a range of choice settings and demand manipulations and was not wholly attributable to strategic avoidance of errors, minimization of time on task, or maximization of the rate of goal achievement. It is remarkable that the effect also did not depend on awareness of the demand manipulation. Consistent with a motivational account, avoidance of demand displayed sensitivity to task incentives and covaried with individual differences in the efficacy of executive control. The findings reported, together with convergent neuroscientific evidence, lend support to the idea that anticipated cognitive demand plays a significant role in behavioral decision making.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                17 July 2020
                2020
                : 14
                : 287
                Affiliations
                Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
                Author notes

                Edited by: Todd S. Braver, Washington University in St. Louis, United States

                Reviewed by: Andrew Westbrook, Brown University, United States; Ceyda Sayalı, Radboud University Nijmegen Medical Centre, Netherlands

                *Correspondence: Stijn A. A. Massar stijn.massar@ 123456nus.edu.sg Michael W. L. Chee michael.chee@ 123456nus.edu.sg

                Specialty section: This article was submitted to Cognitive Neuroscience, a section of the journal Frontiers in Human Neuroscience

                Article
                10.3389/fnhum.2020.00287
                7379863
                32116603
                5bf7852b-d994-4719-8e4d-6e5b8649f2e4
                Copyright © 2020 Massar, Pu, Chen and Chee.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 April 2020
                : 26 June 2020
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 35, Pages: 9, Words: 6305
                Funding
                Funded by: National Medical Research Council 10.13039/501100001349
                Categories
                Human Neuroscience
                Brief Research Report

                Neurosciences
                cognitive effort,effort discounting,loss aversion,framing effect,motivation,sustained attention,n-back,pupillometry

                Comments

                Comment on this article