0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diagnosing the particle transport mechanism in the pulsar halo via X-ray observations

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pulsar halos (also termed 'TeV halo') are a new class of \(\gamma\)-ray sources in Galaxy, which manifest as extended \(\gamma\)-ray emission around middle-age pulsars, as discovered around the Geminga pulsar, the Monogem pulsar and PSR~J0622+3749 by HAWC and LHAASO. A consensus has been reached that the TeV emission comes from the inverse Compton scattering of escaping electrons/positrons from the PWN off soft background radiation field, while the particle transport mechanism in the halo is still in dispute. Currently, there are mainly three interpretations, namely, the isotropic, suppressed diffusion model; the isotropic, unsuppressed diffusion model with considering ballistic propagation of newly injected particles; the anisotropic diffusion model. While the predicted gamma-ray surface brightness profiles by all three models can be more or less consistent with the observation, the implication of the three models for cosmic-ray transport mechanisms and the properties of interstellar magnetic field are quite different. In this study, we calculate the anticipated X-ray emission of pulsar halos under the three models. We show that the synchrotron radiation of these escaping electrons can produce a corresponding X-ray halo around the pulsar, and the expected surface brightness profiles are distinct in three models. We suggest that sensitive X-ray detectors of a large field of view (such as eROSITA and Einstein Probe) with a reasonably long exposure time are crucial to understand the formation mechanism of pulsar halos and serve as a probe to the properties of the interstellar turbulence.

          Related collections

          Author and article information

          Journal
          31 January 2024
          Article
          2401.17982
          5c0af4cc-59f9-4f54-841e-a6a09e3ff121

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          7 figures
          astro-ph.HE

          High energy astrophysical phenomena
          High energy astrophysical phenomena

          Comments

          Comment on this article