25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generation of Pet1 210-Cre Transgenic Mouse Line Reveals Non-Serotonergic Expression Domains of Pet1 Both in CNS and Periphery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurons producing serotonin (5-hydroxytryptamine, 5-HT) constitute one of the most widely distributed neuronal networks in the mammalian central nervous system (CNS) and exhibit a profuse innervation throughout the CNS already at early stages of development. Serotonergic neuron specification is controlled by a combination of secreted molecules and transcription factors such as Shh, Fgf4/8, Nkx2.2, Lmx1b and Pet1. In the mouse, Pet1 mRNA expression appears between 10 and 11 days post coitum (dpc) in serotonergic post-mitotic precursors and persists in serotonergic neurons up to adulthood, where it promotes the expression of genes defining the mature serotonergic phenotype such as tryptophan hydroxylase 2 ( Tph2) and serotonin transporter ( SERT). Hence, the generation of genetic tools based on Pet1 specific expression represents a valuable approach to study the development and function of the serotonergic system. Here, we report the generation of a Pet1 210-Cre transgenic mouse line in which the Cre recombinase is expressed under the control of a 210 kb fragment from the Pet1 genetic locus to ensure a reliable and faithful control of somatic recombination in Pet1 cell lineage. Besides Cre-mediated recombination accurately occurred in the serotonergic system as expected and according to previous studies, Pet1 210-Cre transgenic mouse line allowed us to identify novel, so far uncharacterized, Pet1 expression domains. Indeed, we showed that in the raphe Pet1 is expressed also in a non-serotonergic neuronal population intermingled with Tph2-expressing cells and mostly localized in the B8 and B9 nuclei. Moreover, we detected Cre-mediated recombination also in the developing pancreas and in the ureteric bud derivatives of the kidney, where it reflected a specific Pet1 expression. Thus, Pet1 210-Cre transgenic mouse line faithfully drives Cre-mediated recombination in all Pet1 expression domains representing a valuable tool to genetically manipulate serotonergic and non-serotonergic Pet1 cell lineages.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.

          The mammalian central nervous system (CNS) contains a remarkable array of neural cells, each with a complex pattern of connections that together generate perceptions and higher brain functions. Here we describe a large-scale screen to create an atlas of CNS gene expression at the cellular level, and to provide a library of verified bacterial artificial chromosome (BAC) vectors and transgenic mouse lines that offer experimental access to CNS regions, cell classes and pathways. We illustrate the use of this atlas to derive novel insights into gene function in neural cells, and into principal steps of CNS development. The atlas, library of BAC vectors and BAC transgenic mice generated in this screen provide a rich resource that allows a broad array of investigations not previously available to the neuroscience community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.

            Gene splicing by overlap extension is a new approach for recombining DNA molecules at precise junctions irrespective of nucleotide sequences at the recombination site and without the use of restriction endonucleases or ligase. Fragments from the genes that are to be recombined are generated in separate polymerase chain reactions (PCRs). The primers are designed so that the ends of the products contain complementary sequences. When these PCR products are mixed, denatured, and reannealed, the strands having the matching sequences at their 3' ends overlap and act as primers for each other. Extension of this overlap by DNA polymerase produces a molecule in which the original sequences are 'spliced' together. This technique is used to construct a gene encoding a mosaic fusion protein comprised of parts of two different class-I major histocompatibility genes. This simple and widely applicable approach has significant advantages over standard recombinant DNA techniques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA.

              Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective lambda prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97, 5978-5983). Importantly, the recombination is proficient with DNA homologies as short as 30-50 bp, making it possible to use PCR-amplified fragments as the targeting cassette. Here, we adapt this prophage system for use in bacterial artificial chromosome (BAC) engineering by transferring it to DH10B cells, a BAC host strain. In addition, arabinose inducible cre and flpe genes are introduced into these cells to facilitate BAC modification using loxP and FRT sites. Next, we demonstrate the utility of this recombination system by using it to target cre to the 3' end of the mouse neuron-specific enolase (Eno2) gene carried on a 250-kb BAC, which made it possible to generate BAC transgenic mice that specifically express Cre in all mature neurons. In addition, we show that fragments as large as 80 kb can be subcloned from BACs by gap repair using this recombination system, obviating the need for restriction enzymes or DNA ligases. Finally, we show that BACs can be modified with this recombination system in the absence of drug selection. The ability to modify or subclone large fragments of genomic DNA with precision should facilitate many kinds of genomic experiments that were difficult or impossible to perform previously and aid in studies of gene function in the postgenomic era. Copyright 2001 Academic Press.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                6 August 2014
                : 9
                : 8
                : e104318
                Affiliations
                [1 ]Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
                [2 ]Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
                IGBMC/ICS, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BP M. Pasqualetti. Performed the experiments: BP SM GP M. Pasqualetti M. Pratelli. Analyzed the data: BP SM M. Pasqualetti. Contributed to the writing of the manuscript: BP M. Pasqualetti.

                [¤]

                Current address: Laboratory of Neural Differentiation, Université Catholique de Louvain, Brussels, Belgium

                Article
                PONE-D-14-14932
                10.1371/journal.pone.0104318
                4123907
                25098329
                5c3b6696-0e9e-4caf-bf04-9705d2a745c6
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 April 2014
                : 7 July 2014
                Page count
                Pages: 13
                Funding
                This work was supported by the Italian Ministry of Education, University and Research (MIUR) (Prin 2008, 200894SYW2) and Toscana Life Sciences Foundation (Orphan_0108 program) to MP. BP and GP were supported by a PhD program from the University of Pisa. SM was supported by the Regional Program and European Social Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Research and Analysis Methods
                Animal Studies
                Animal Models of Disease
                Model Organisms
                Animal Models
                Biology and life sciences
                Biochemistry
                DNA
                DNA recombination
                Homologous Recombination
                Neurochemistry
                Neurotransmitters
                Biogenic Amines
                Serotonin
                Biotechnology
                Genetic Engineering
                Transgenic Engineering
                Developmental Biology
                Cell Differentiation
                Neuronal Differentiation
                Molecular Biology
                Molecular Biology Techniques
                Molecular Probe Techniques
                Probe Hybridization
                In Situ Hybridization
                Neuroscience
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article