30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and Expression Analysis of Cytokinin Metabolic Genes in Soybean under Normal and Drought Conditions in Relation to Cytokinin Levels

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cytokinins (CKs) mediate cellular responses to drought stress and targeted control of CK metabolism can be used to develop drought-tolerant plants. Aiming to manipulate CK levels to improve drought tolerance of soybean cultivars through genetic engineering of CK metabolic genes, we surveyed the soybean genome and identified 14 CK biosynthetic (isopentenyltransferase, GmIPT) and 17 CK degradative (CK dehydrogenase, GmCKX) genes. Comparative analyses of GmIPTs and GmCKXs with Arabidopsis counterparts revealed their similar architecture. The average numbers of abiotic stress-inducible cis-elements per promoter were 0.4 and 1.2 for GmIPT and GmCKX genes, respectively, suggesting that upregulation of GmCKXs, thereby reduction of CK levels, maybe the major events under abiotic stresses. Indeed, the expression of 12 GmCKX genes was upregulated by dehydration in R2 roots. Overall, the expressions of soybean CK metabolic genes in various tissues at various stages were highly responsive to drought. CK contents in various organs at the reproductive (R2) stage were also determined under well-watered and drought stress conditions. Although tRNA-type GmIPT genes were highly expressed in soybean, cis-zeatin and its derivatives were found at low concentrations. Moreover, reduction of total CK content in R2 leaves under drought was attributable to the decrease in dihydrozeatin levels, suggesting a role of this molecule in regulating soybean's responses to drought stress. Our systematic analysis of the GmIPT and GmCKX families has provided an insight into CK metabolism in soybean under drought stress and a solid foundation for in-depth characterization and future development of improved drought-tolerant soybean cultivars by manipulation of CK levels via biotechnological approach.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Synteny and collinearity in plant genomes.

          Correlated gene arrangements among taxa provide a valuable framework for inference of shared ancestry of genes and for the utilization of findings from model organisms to study less-well-understood systems. In angiosperms, comparisons of gene arrangements are complicated by recurring polyploidy and extensive genome rearrangement. New genome sequences and improved analytical approaches are clarifying angiosperm evolution and revealing patterns of differential gene loss after genome duplication and differential gene retention associated with evolution of some morphological complexity. Because of variability in DNA substitution rates among taxa and genes, deviation from collinearity might be a more reliable phylogenetic character.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytokinin oxidase regulates rice grain production.

            Most agriculturally important traits are regulated by genes known as quantitative trait loci (QTLs) derived from natural allelic variations. We here show that a QTL that increases grain productivity in rice, Gn1a, is a gene for cytokinin oxidase/dehydrogenase (OsCKX2), an enzyme that degrades the phytohormone cytokinin. Reduced expression of OsCKX2 causes cytokinin accumulation in inflorescence meristems and increases the number of reproductive organs, resulting in enhanced grain yield. QTL pyramiding to combine loci for grain number and plant height in the same genetic background generated lines exhibiting both beneficial traits. These results provide a strategy for tailormade crop improvement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hormone balance and abiotic stress tolerance in crop plants.

              Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                10 August 2012
                : 7
                : 8
                : e42411
                Affiliations
                [1 ]Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
                [2 ]National Key Laboratory of Plant Cell Biotechnology and Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Hanoi, Vietnam
                [3 ]Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
                [4 ]Plant Genomic Network Research Team, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
                [5 ]Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
                [6 ]Gene Discovery Research Group, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
                Kyushu Institute of Technology, Japan
                Author notes

                Competing Interests: The authors have read the journal's policy and have the following conflicts: co-author L-SPT is a PLoS ONE Editorial Board member. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials..

                Conceived and designed the experiments: L-SPT. Performed the experiments: DTL RN YW MT RV. Analyzed the data: DTL L-SPT. Contributed reagents/materials/analysis tools: MS LHH KY-S KS L-SPT. Wrote the paper: DTL L-SPT. Revised the manuscript: DTL L-SPT.

                Article
                PONE-D-12-13972
                10.1371/journal.pone.0042411
                3416864
                22900018
                5c8de2fb-f8d5-4510-9c5b-cab20c7e364b
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 May 2012
                : 4 July 2012
                Page count
                Pages: 15
                Funding
                This work was supported by a Rikagaku Kenkyusho (Institute of Physical and Chemical Research, Japan) (RIKEN) Foreign Postdoctoral Fellowship (Japan; http://www.riken.go.jp/engn/) to DTL and by a grant (No. AP24-1-0076) from the RIKEN Strategic Research Program for R & D (Japan; http://www.riken.go.jp/engn/) to L-SPT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Hormones
                Metabolism
                Genetics
                Gene Expression
                DNA transcription
                Plant Genetics
                Crop Genetics
                Gene Function
                Genomics
                Genome Expression Analysis
                Plant Science
                Plant Phylogenetics
                Plant Physiology
                Systems Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article