8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The PSMP-CCR2 interactions trigger monocyte/macrophage-dependent colitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monocytes/macrophages have been found to be an important component of colitis. However, the key chemokine that initiates the CCR2 + monocytes migration from circulation to colitis tissue remains to be undiscovered. PC3-secreted microprotein (PSMP) is a novel chemokine whose receptor is CCR2. The physiological and pathological functions of PSMP have not yet been reported. In this study, PSMP was found to be expressed in colitis and colonic tumor tissues from patients and significantly up-regulated in mouse DSS-induced colitis tissues. PSMP overexpression in the colon aggravated the DSS-induced colitis and the anti-PSMP neutralizing antibody mollified the colitis by reducing macrophage infiltration and inhibiting the expression of IL-6, TNF-α and CCL2. Furthermore, we demonstrated that lipopolysaccharide and muramyl dipeptide induced PSMP expression in the colonic epithelial cells. PSMP was up-regulated in the initial stage prior to IL-6, TNF-α and CCL2 up-regulated expression in DSS colitis and promoted the M1 macrophages to produce CCL2. PSMP chemo-attracted Ly6C hi monocytes in a CCR2 dependent manner via in situ chemotaxis and adoptive transfer assays. Our data identify PSMP as a key molecule in ulcerative colitis, which provides a novel mechanism of monocyte/macrophage migration that affects gut innate immunity and makes PSMP a potential target for controlling colitis.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Development of monocytes, macrophages, and dendritic cells.

          Monocytes and macrophages are critical effectors and regulators of inflammation and the innate immune response, the immediate arm of the immune system. Dendritic cells initiate and regulate the highly pathogen-specific adaptive immune responses and are central to the development of immunologic memory and tolerance. Recent in vivo experimental approaches in the mouse have unveiled new aspects of the developmental and lineage relationships among these cell populations. Despite this, the origin and differentiation cues for many tissue macrophages, monocytes, and dendritic cell subsets in mice, and the corresponding cell populations in humans, remain to be elucidated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Innate and adaptive immunity in inflammatory bowel disease.

            Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). The exact cause of IBD remains unknown. Available evidence suggests that an abnormal immune response against the microorganisms of the intestinal flora is responsible for the disease in genetically susceptible individuals. The adaptive immune response has classically been considered to play a major role in the pathogenesis of IBD. However, recent advances in immunology and genetics have clarified that the innate immune response is equally as important in inducing gut inflammation in these patients. In particular, an altered epithelial barrier function contributes to intestinal inflammation in patients with UC, while aberrant innate immune responses, such as antimicrobial peptide production, innate microbial sensing and autophagy are particularly associated to CD pathogenesis. On the other hand, besides T helper cell type (Th)1 and Th2 immune responses, other subsets of T cells, namely Th17 and regulatory T (Treg) cells, are likely to play a role in IBD. However, given the complexity and probably the redundancy of pathways leading to IBD lesions, and the fact that Th17 cells may also have protective functions, neutralization of IL-17A failed to induce any improvement in CD. Studying the interactions between various constituents of the innate and adaptive immune systems will certainly open new horizons in the knowledge about the immunologic mechanisms implicated in gut inflammation. Copyright © 2013 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells.

              Ly6C(hi) monocytes seed the healthy intestinal lamina propria to give rise to resident CX(3)CR1(+) macrophages that contribute to the maintenance of gut homeostasis. Here we report on two alternative monocyte fates in the inflamed colon. We showed that CCR2 expression is essential to the recruitment of Ly6C(hi) monocytes to the inflamed gut to become the dominant mononuclear cell type in the lamina propria during settings of acute colitis. In the inflammatory microenvironment, monocytes upregulated TLR2 and NOD2, rendering them responsive to bacterial products to become proinflammatory effector cells. Ablation of Ly6C(hi) monocytes ameliorated acute gut inflammation. With time, monocytes differentiated into migratory antigen-presenting cells capable of priming naive T cells, thus acquiring hallmarks reminiscent of dendritic cells. Collectively, our results highlight cellular dynamics in the inflamed colon and the plasticity of Ly6C(hi) monocytes, marking them as potential targets for inflammatory bowel disease (IBD) therapy. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                yw@bjmu.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                11 July 2017
                11 July 2017
                2017
                : 7
                : 5107
                Affiliations
                [1 ]ISNI 0000 0001 2256 9319, GRID grid.11135.37, Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, , Peking University Health Science Center, ; Beijing, 100191 P.R. China
                [2 ]Center for Human Disease Genomics, PekingUniversity, Beijing, 100191 P.R. China
                [3 ]Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 P.R. China
                [4 ]ISNI 0000 0001 0662 3178, GRID grid.12527.33, Department of Pathology, Cancer Institute and Hospital, , Chinese Academy of Medical Sciences, ; 17 Panjiayuan South Lane, Chaoyang District, Beijing, 100021 P.R. China
                Article
                5255
                10.1038/s41598-017-05255-7
                5506041
                28698550
                5ccef4a5-f13f-4fac-8192-0c6d78dcc306
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 January 2017
                : 25 May 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article