17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epilepsy, Consciousness and Neurostimulation

      research-article
      *
      Behavioural Neurology
      IOS Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Consciousness is often disrupted in epilepsy. This may involve altered responsiveness or changes in awareness of self and subjective experiences. Subcortical arousal systems and paralimbic fronto-parietal association cortices are thought to underpin current concepts of consciousness. The Network Inhibition Hypothesis proposes a common neuroanatomical substrate for impaired consciousness during absence, complex partial and tonic-clonic seizures.

          Neurostimulation in epilepsy remains in its infancy with vagal nerve stimulation (VNS) as the only firmly established technique and a series of other methods under investigation including deep brain stimulation (DBS), intracranial cortical stimulation and repetitive transcranial magnetic stimulation (rTMS). Many of these systems impact on the neural systems thought to be involved in consciousness as a continuous duty cycle although some adaptive (seizure triggered) techniques have been developed.

          Theoretically, fixed duty cycle neurostimulation could have profound effects on responsiveness, awareness of self and subjective experience. Animal studies suggest vagal nerve stimulation positively influences hippocampal long term potentiation. In humans, a chronic effect of increased alertness in VNS implanted subjects and acute effect on memory consolidation have been reported but convincing data on either improvements or deterioration in attention and memory is lacking. Thalamic deep brain stimulation (DBS) is perhaps the most interesting neurostimulation technique in the context of consciousness. Neither bilateral anterior or centromedian thalamic nucleus DBS seem to affect cognition. Unilateral globus pallidus internus DBS caused transient wakefulness in an anaesthetised individual.

          As intracranial neurostimulation, particularly thalamic DBS, becomes more established as a clinical intervention, the effects on consciousness and cognition with variations in stimulus parameters will need to be studied to understand whether these secondary effects of neurostimulation make a significant positive (or adverse) contribution to quality of life.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies

          Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have been extensively used to explore the functional neuroanatomy of cognitive functions. Here we review 275 PET and fMRI studies of attention (sustained, selective, Stroop, orientation, divided), perception (object, face, space/motion, smell), imagery (object, space/motion), language (written/spoken word recognition, spoken/no spoken response), working memory (verbal/numeric, object, spatial, problem solving), semantic memory retrieval (categorization, generation), episodic memory encoding (verbal, object, spatial), episodic memory retrieval (verbal, nonverbal, success, effort, mode, context), priming (perceptual, conceptual), and procedural memory (conditioning, motor, and nonmotor skill learning). To identify consistent activation patterns associated with these cognitive operations, data from 412 contrasts were summarized at the level of cortical Brodmann's areas, insula, thalamus, medial-temporal lobe (including hippocampus), basal ganglia, and cerebellum. For perception and imagery, activation patterns included primary and secondary regions in the dorsal and ventral pathways. For attention and working memory, activations were usually found in prefrontal and parietal regions. For language and semantic memory retrieval, typical regions included left prefrontal and temporal regions. For episodic memory encoding, consistently activated regions included left prefrontal and medial temporal regions. For episodic memory retrieval, activation patterns included prefrontal, medial temporal, and posterior midline regions. For priming, deactivations in prefrontal (conceptual) or extrastriate (perceptual) regions were consistently seen. For procedural memory, activations were found in motor as well as in non-motor brain areas. Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges. These observations are discussed in relation to functional specialization as well as functional integration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.

            We studied the effects of low-frequency transcranial magnetic stimulation (TMS) on motor cortex excitability in humans. TMS at 0.1 Hz for 1 hour did not change cortical excitability. Stimulation at 0.9 Hz for 15 minutes (810 pulses), similar to the parameters used to induce long-term depression (LTD) in cortical slice preparations and in vivo animal studies, led to a mean decrease in motor evoked potential (MEP) amplitude of 19.5%. The decrease in cortical excitability lasted for at least 15 minutes after the end of the 0.9 Hz stimulation. The mechanism underlying this decrease in excitability may be similar to LTD. TMS-induced reduction of cortical excitability has potential clinical applications in diseases such as epilepsy and myoclonus. Spread of excitation, which may be a warning sign for seizures, occurred in one subject and was not accompanied by increased MEP amplitude, suggesting that spread of excitation and amplitude changes are different phenomena and also indicating the need for adequate monitoring even with stimulations at low frequencies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects.

              Vagal nerve stimulation (VNS) is an approved treatment for epilepsy and is currently under investigation as a therapy for other disorders, including depression, anxiety and Alzheimer's disease. This review examines the pre-clinical and clinical literature relating to VNS. A brief historical perspective is given, followed by consideration of the efficacy of the various clinical applications of VNS. Finally, what is known about the mechanism by which VNS exerts clinical benefit is considered. It is concluded that although the precise mechanism of action of VNS is still unknown, the search for the mechanism has the potential to lend new insight into the neuropathology of depression. It is important that prior assumptions about the influence of VNS on particular aspects of brain function do not constrain the investigations.
                Bookmark

                Author and article information

                Journal
                Behav Neurol
                Behav Neurol
                BN
                Behavioural Neurology
                IOS Press
                0953-4180
                1875-8584
                2011
                29 March 2011
                : 24
                : 1
                : 75-81
                Affiliations
                Department of NeuropsychiatryThe Barberry BuildingUK Centre for Mental HealthEdgbastonBirminghamUK
                Author notes
                Article
                464018
                10.3233/BEN-2011-0319
                5377955
                21447901
                5d557372-7089-49d2-ac9a-780f510369d6
                Copyright © 2011 Hindawi Publishing Corporation and the authors.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 March 2011
                : 23 March 2011
                Categories
                Research Article

                Comments

                Comment on this article