5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Stress Analysis of Polyetherketoneketone (PEKK) Telescopic Crowns Supported by Different Primary Crown Materials

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study aimed to investigate the stress distribution of secondary telescopic crowns made of polyetherketoneketone (PEKK) combined with different primary crown (PC) materials (Zirconia, CoCr, Titanium, and PEKK) using finite element analysis. The geometric model was composed of bone tissue, periodontal ligament, root dentin, cement layer, primary crown, and secondary telescopic crown (SC). A total of four models were evaluated in which the secondary crowns were simulated in PEKK. The models were designed in CAD software and exported to the computer aided engineering software for the statistic structural analysis simulation. The materials were considered isotropic, with linear behavior and elastic properties. The model was fixed in the bone base and the load was applied at the occlusal surface of the crowns with 600 N. The results were required in von-Mises stress for the primary crown, secondary crown, cement layer, and Equivalent Strain to the periodontal ligament and bone tissue. Results show that the material influenced the stress distribution. The higher the PC elastic modulus, the higher the stress magnitude on the SC and cement layer. In the present study, the use of milled high-density polymer for primary crown presented a promising biomechanical behavior as an alternative material for double-crown design.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Polyetherketoneketone (PEKK): An emerging biomaterial for oral implants and dental prostheses

          Polyetherketoneketone (PEKK) is a new evolving polymeric material. The present article comprehensively reviewed an overview of various applications of PEKK in prosthodontics and oral implantology, highlighting its prospects for clinical applications. PEKK biomaterials is an elastic material with good shock absorbance and fracture resistance and present ultra-high performance among all thermoplastic composites for excellent mechanical strength, chemical resistance, and high thermal stability. Available articles on PEKK for dental applications were reviewed from January 1957 to August 2020) using MEDLINE/PubMed, Web of Science, and ScienceDirect resources. PEKK presents suitable physical, mechanical, and chemical properties for applications in prosthodontics and oral implantology. PEKK has good potential for a wide range of dental applications, including tooth restorations, crowns, bridge, endoposts, denture framework, implant-supported fixed prosthesis, and dental implants. PEKK dental implants have shown lesser stress shielding compared to titanium for dental implant applications. Further modifications and improving material properties can result in broader applications in the field of dentistry. Long term evaluations are needed as PEKK is recently applied in dentistry, and there are limited studies published on PEKK.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            CAD-FEA modeling and analysis of different full crown monolithic restorations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanical behavior of bulk direct composite versus block composite and lithium disilicate indirect Class II restorations by CAD-FEM modeling.

              To study the influence of resin based and lithium disilicate materials on the stress and strain distributions in adhesive class II mesio-occlusal-distal (MOD) restorations using numerical finite element analysis (FEA). To investigate the materials combinations in the restored teeth during mastication and their ability to relieve stresses.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                April 2022
                March 28 2022
                : 12
                : 7
                : 3446
                Article
                10.3390/app12073446
                5d7b1165-ccc4-44ad-a4c4-c53717ffdf9a
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article