19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Destruction of graphene by metal adatoms

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The formation energies for mono- and bivacancies in graphene in the presence of adatoms of various metals and small metallic clusters have been calculated. It is shown that transition metal impurities, such as iron, nickel and, especially, cobalt reduce dramatically the vacancy formation energies whereas gold impurities have almost no effect on characteristics of the vacancies. This results highlight that special measures are required in order to protect graphene from damage by transition metal leads.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The electronic properties of graphene

          This article reviews the basic theoretical aspects of graphene, a one atom thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. We show that the Dirac electrons behave in unusual ways in tunneling, confinement, and integer quantum Hall effect. We discuss the electronic properties of graphene stacks and show that they vary with stacking order and number of layers. Edge (surface) states in graphene are strongly dependent on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. We also discuss how different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Electronic spin transport and spin precession in single graphene layers at room temperature

            The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport also supercurrent transport has already been observed. It has also been suggested that graphene might be a promising material for spintronics and related applications, such as the realization of spin qubits, due to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. As a first step in the direction of graphene spintronics and spin qubits we report the observation of spin transport, as well as Larmor spin precession over micrometer long distances using single graphene layer based field effect transistors. The non-local spin valve geometry was used, employing four terminal contact geometries with ferromagnetic cobalt electrodes, which make contact to the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals which reflect the magnetization direction of all 4 electrodes, indicating that spin coherence extends underneath all 4 contacts. No significant changes in the spin signals occur between 4.2K, 77K and room temperature. From Hanle type spin precession measurements we extract a spin relaxation length between 1.5 and 2 micron at room temperature, only weakly dependent on charge density, which is varied from n~0 at the Dirac neutrality point to n = 3.6 10^16/m^2. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around 10%.
              Bookmark

              Author and article information

              Journal
              05 April 2009
              2009-06-09
              Article
              10.1063/1.3160551
              0904.0807
              5e20f9af-8404-4f1d-b47e-e2989accf07c

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              History
              Custom metadata
              10 pages, 4 figures, few refs added, English improved, to appear in Appl. Phys. Lett
              cond-mat.mtrl-sci

              Comments

              Comment on this article