1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Integration of 3D electroanatomic maps and magnetic resonance scar characterization into the navigation system to guide ventricular tachycardia ablation.

      Circulation. Arrhythmia and Electrophysiology
      Aged, Algorithms, Cardiac Imaging Techniques, methods, Catheter Ablation, Cicatrix, pathology, Electrophysiologic Techniques, Cardiac, Female, Heart Ventricles, surgery, Humans, Imaging, Three-Dimensional, Magnetic Resonance Imaging, Male, Middle Aged, Prospective Studies, Tachycardia, Ventricular

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Scar heterogeneity identified with contrast-enhanced cardiac magnetic resonance (CE-CMR) has been related to its arrhythmogenic potential by using different algorithms. The purpose of the study was to identify the algorithm that best fits with the electroanatomic voltage maps (EAM) to guide ventricular tachycardia (VT) ablation. Three-dimensional scar reconstructions from preprocedural CE-CMR study at 3T were obtained and compared with EAMs of 10 ischemic patients submitted for a VT ablation. Three-dimensional scar reconstructions were created for the core (3D-CORE) and border zone (3D-BZ), applying cutoff values of 50%, 60%, and 70% of the maximum pixel signal intensity to discriminate between core and BZ. The left ventricular cavity from CE-CMR (3D-LV) was merged with the EAM, and the 3D-CORE and 3D-BZ were compared with the corresponding EAM areas defined with standard cutoff voltage values. The best match was obtained when a cutoff value of 60% of the maximum pixel signal intensity was used, both for core (r(2)=0.827; P<0.001) and BZ (r(2)=0.511; P=0.020), identifying 69% of conducting channels (CC) observed in the EAM. Matching improved when only the subendocardial half of the wall was segmented (CORE: r(2)=0.808; P<0.001 and BZ: r(2)=0.485; P=0.025), identifying 81% of CC. When comparing the location of each bipolar voltage intracardiac electrogram with respect to the 3D CE-CMR-derived structures, a Cohen κ coefficient of 0.70 was obtained. Scar characterization by means of high resolution CE-CMR resembles that of EAM and can be integrated into the CARTO system to guide VT ablation.

          Related collections

          Author and article information

          Comments

          Comment on this article