8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sensitive spectrophotometric determination of fluoxetine from urine samples using charge transfer complex formation after solid phase extraction by magnetic multiwalled carbon nanotubes

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Current progress on the chemical modification of carbon nanotubes.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent.

            A magnetic multi-wall carbon nanotube (MMWCNT) nanocomposite was synthesized and was used as an adsorbent for removal of cationic dyes from aqueous solutions. The MMWCNT nanocomposite was composed of commercial multi-wall carbon nanotubes and iron oxide nanoparticles. The properties of this magnetic adsorbent were characterized by scanning electron microscopy, X-ray diffraction and BET surface area measurements. Adsorption characteristics of the MMWCNT nanocomposite adsorbent were examined using methylene blue, neutral red and brilliant cresyl blue as adsorbates. Experiments were carried out to investigate adsorption kinetics, adsorption capacity of the adsorbent and the effect of adsorption dosage and solution pH values on the removal of cationic dyes. Kinetic data were well fitted by a pseudo second-order model. Freundlich model was used to study the adsorption isotherms. The prepared MMWCNT adsorbent displayed the main advantage of separation convenience compared to the present adsorption treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow).

              Pharmaceuticals and personal care products (PPCPs) have been found in surface waters worldwide, but little is understood of their effects on the wildlife that inhabit these waters. Fluoxetine (Prozac; Eli Lilly), a highly prescribed selective serotonin reuptake inhibitor (SSRI), is a commonly found PPCP in surface water. The purpose of this project was to determine if environmentally relevant concentrations of fluoxetine impact behavior that is important for population survival in native fish species, including reproduction, feeding and predator avoidance. Chronic 4-week exposures were conducted with doses ranging from 100 ng/L to 100 μg/L to cover a range of environmentally relevant concentrations up to higher concentrations comparable to other published studies with the same drug that have documented various physiological impacts. Pimephales promelas (fathead minnow), a species native to North America, was used as it conducts a range of specific mating behaviors and therefore serves as an excellent model of specific impacts on brain function. Fluoxetine concentrations as low as 1 μg/L, a concentration that has been found in many freshwater environments, were found to significantly impact mating behavior, specifically nest building and defending in male fish. Males were also found to display aggression, isolation, and repetitive behaviors at higher concentrations. Female mating behavior was largely unaffected. In addition, predator avoidance behaviors in males and females were also impacted at 1 μg/L. Feeding was impacted at 10 μg/L and in the highest exposure (100 μg/L), egg production was limited by deaths of females due to significant male aggressive behaviors in the first two weeks of exposure. Specific behavioral changes occurred at each concentration (most noticeably 1 μg/L and 100 μg/L) indicating a dose dependent effect that triggered different responses at lower exposures versus higher exposures or differential impacts of dose depending on brain region. Length of exposure also had an impact on aggressive behavior. Changes in hormone levels, indicating significant neuroendocrine changes, suggested as a mechanism of response in higher dose and acute studies, were not linked to changes in behaviors at the doses used in this study. This research provides detailed data on how exposures to fluoxetine impact specific fish behaviors and reproduction and that the effects are dose dependent.
                Bookmark

                Author and article information

                Journal
                AMNECT
                Anal. Methods
                Anal. Methods
                Royal Society of Chemistry (RSC)
                1759-9660
                1759-9679
                2014
                August 11 2014
                : 6
                : 21
                : 8633-8639
                Article
                10.1039/C4AY01266F
                5ee0d51b-97cd-4620-a7b0-fdf623020dbe
                © 2014
                History

                Comments

                Comment on this article