Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MRI-based vertebral bone quality score effectively reflects bone quality in patients with osteoporotic vertebral compressive fractures

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis.

          Preliminary studies have suggested that there is an increase in adipocytic tissue in osteoporotic (OP) bone, supporting in vitro evidence for a switch in differentiation of stromal cells from the osteoblastic to the adipocytic lineage. To investigate this the variation of the ratio of adipose tissue to haemopoietic/stromal tissue in OP bone was measured. The ratio of adipocytic to haemopoietic/stromal tissue (A/H) was measured by semi-automated image analysis in iliac crest biopsies from 127 patients with osteoporosis (84 female patients, 48 male patients; mean age, 55 years; range, 5-80). Fourteen patients with normal histomorphometric data (nine women; five men; mean age, 48 years; range 21-70) acted as controls. The ratio of A/H was higher in OP bone than in the normal controls (OP mean 43.06% v normal mean 22.4%; p < 0.001). Multiple regression analysis showed that 98.5% of the variability in the A/H ratio was the result of age and several measures of bone formation, including cancellous wall thickness, osteoid volume, cancellous thickness, cortical wall thickness, cancellous apposition rate, and bone formation rate, together with cancellous separation (each significant at p < 0.001). Those with the greatest effect on the A/H ratio (in decreasing order) were cancellous apposition rate, osteoid volume, and age. Cancellous apposition rate, osteoid volume, and age were associated with the increase in the proportion of adipose tissue present in OP bone. Of these, cancellous apposition rate reflects osteoblast activity, indicating that the increase in the volume of adipose tissue in osteoporosis is associated with reduced bone formation, supporting the postulated switch in differentiation of stromal cells from the osteoblastic to the adipocytic pathway in osteoporosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology of Vertebral Fractures.

            Vertebral fractures are one of the most common fractures associated with skeletal fragility and can cause as much morbidity as hip fractures. However, the epidemiology of vertebral fractures differs from that of osteoporotic fractures at other skeletal sites in important ways, largely because only one quarter to one-third of vertebral fractures are recognized clinically at the time of their occurrence and otherwise require lateral spine imaging to be recognized. This article first reviews the prevalence and incidence of clinical and radiographic vertebral fractures in populations across the globe and secular trends in the incidence of vertebral fracture over time. Next, associations of vertebral fractures with measures of bone mineral density and bone microarchitecture are reviewed followed by associations of vertebral fracture with various textural measures of trabecular bone, including trabecular bone score. Finally, the article reviews clinical risk factors for vertebral fracture and the association of vertebral fractures with morbidity, mortality, and other subsequent adverse health outcomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study.

              Bone strength is predominantly determined by bone density, but bone microarchitecture also plays an important role. We examined whether trabecular bone score (TBS) predicts the risk of vertebral fractures in a Japanese female cohort. Of 1950 randomly selected women aged 15 to 79 years, we analyzed data from 665 women aged 50 years and older, who completed the baseline study and at least one follow-up survey over 10 years, and who had no conditions affecting bone metabolism. Each survey included spinal imaging by dual-energy X-ray absorptiometry (DXA) for vertebral fracture assessment and spine areal bone mineral density (aBMD) measurement. TBS was obtained from spine DXA scans archived in the baseline study. Incident vertebral fracture was determined when vertebral height was reduced by 20% or more and satisfied McCloskey-Kanis criteria or Genant's grade 2 fracture at follow-up. Among eligible women (mean age 64.1 ± 8.1 years), 92 suffered incident vertebral fractures (16.7/10(3) person-years). These women were older with lower aBMD and TBS values relative to those without fractures. The unadjusted odds ratio of vertebral fractures for one standard deviation decrease in TBS was 1.98 (95% confidence interval [CI] 1.56, 2.51) and remained significant (1.64, 95% CI 1.25, 2.15) after adjusting for aBMD. The area under the receiver operating characteristic curve of TBS and aBMD combined was 0.700 for vertebral fracture prediction and was not significantly greater than that of aBMD alone (0.673). However, reclassification improvement measures indicated that TBS and aBMD combined significantly improved risk prediction accuracy compared with aBMD alone. Further inclusion of age and prevalent vertebral deformity in the model improved vertebral fracture prediction, and TBS remained significant in the model. Thus, lower TBS was associated with higher risk of vertebral fracture over 10 years independently of aBMD and clinical risk factors including prevalent vertebral deformity. TBS could effectively improve fracture risk assessment in clinical settings.
                Bookmark

                Author and article information

                Journal
                European Spine Journal
                Eur Spine J
                Springer Science and Business Media LLC
                0940-6719
                1432-0932
                May 2022
                March 22 2022
                May 2022
                : 31
                : 5
                : 1131-1137
                Article
                10.1007/s00586-022-07177-z
                35316408
                5f210d10-8449-4875-b4e2-0c840a3e20e4
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article