4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vaccarin alleviates cisplatin-induced acute kidney injury via decreasing NOX4-derived ROS

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cisplatin is a chemotherapeutant widely used in treating solid tumors, with the common side effect of acute kidney injury (AKI). Developing effective useful agent for preventing or treating cisplatin-induced AKI is of great importance. In this study, we investigate the protective effect of vaccarin, a chemical entity of flavonoid glycoside, against cisplatin-induced AKI. Cisplatin-treated C57BL/6J mice and human kidney-2 (HK-2) cells were used as the model of cisplatin-induced AKI. The levels of blood urea nitrogen (BUN) and creatine (Cr) levels and periodic acid-Schiff staining (PAS) scores decreased when vaccarin was administrated. Vaccarin had no impact on renal platinum accumulation, which was detected by the ICP-MS 6 h after cisplatin injection. Moreover, vaccarin can significantly alleviate the product of reactive oxygen species and the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) in cisplatin-induced AKI, both in vivo and in vitro. In addition, vaccarin decreased the receptor-interacting protein kinase 1 (RIPK1) related programmed necrosis (necroptosis), cell apoptosis (shown by the protein levels of cleaved-caspase3 and flow cytometry) and inflammation (shown by the decreased levels of NLRP3, p-P65 and the mRNA of several inflammatory factors). NOX4 inhibitor GLX351322 (GLX) and NOX4 kowndown by siRNA have equivalent protective effect of vaccarin in vitro. When vaccarin was administered together with GLX or NOX4 siRNA, this protective effect of vaccarin did not further increase, as indicating by the index of oxidative stress, cell viability, necroptosis and apoptosis. In conclusion, vaccarin can alleviate cisplatin-induced AKI via inhibiting NOX4.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome

          Necroptosis is a type of programmed cell death with great significance in many pathological processes. Tumour necrosis factor-α(TNF), a proinflammatory cytokine, is a prototypic trigger of necroptosis. It is known that mitochondrial reactive oxygen species (ROS) promote necroptosis, and that kinase activity of receptor interacting protein 1 (RIP1) is required for TNF-induced necroptosis. However, how ROS function and what RIP1 phosphorylates to promote necroptosis are largely unknown. Here we show that three crucial cysteines in RIP1 are required for sensing ROS, and ROS subsequently activates RIP1 autophosphorylation on serine residue 161 (S161). The major function of RIP1 kinase activity in TNF-induced necroptosis is to autophosphorylate S161. This specific phosphorylation then enables RIP1 to recruit RIP3 and form a functional necrosome, a central controller of necroptosis. Since ROS induction is known to require necrosomal RIP3, ROS therefore function in a positive feedback circuit that ensures effective induction of necroptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Role for Tubular Necroptosis in Cisplatin-Induced AKI.

            Cell death and inflammation in the proximal tubules are the hallmarks of cisplatin-induced AKI, but the mechanisms underlying these effects have not been fully elucidated. Here, we investigated whether necroptosis, a type of programmed necrosis, has a role in cisplatin-induced AKI. We found that inhibition of any of the core components of the necroptotic pathway-receptor-interacting protein 1 (RIP1), RIP3, or mixed lineage kinase domain-like protein (MLKL)-by gene knockout or a chemical inhibitor diminished cisplatin-induced proximal tubule damage in mice. Similar results were obtained in cultured proximal tubular cells. Furthermore, necroptosis of cultured cells could be induced by cisplatin or by a combination of cytokines (TNF-α, TNF-related weak inducer of apoptosis, and IFN-γ) that were upregulated in proximal tubules of cisplatin-treated mice. However, cisplatin induced an increase in RIP1 and RIP3 expression in cultured tubular cells in the absence of cytokine release. Correspondingly, overexpression of RIP1 or RIP3 enhanced cisplatin-induced necroptosis in vitro. Notably, inflammatory cytokine upregulation in cisplatin-treated mice was partially diminished in RIP3- or MLKL-deficient mice, suggesting a positive feedback loop involving these genes and inflammatory cytokines that promotes necroptosis progression. Thus, our data demonstrate that necroptosis is a major mechanism of proximal tubular cell death in cisplatin-induced nephrotoxic AKI.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The role of inflammasomes in kidney disease

                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                02 November 2023
                November 2023
                02 November 2023
                : 9
                : 11
                : e21231
                Affiliations
                [a ]Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
                [b ]Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
                Author notes
                []Corresponding author. jiagen168@ 123456163.com
                [∗∗ ]Corresponding author. zhaoren@ 123456ahmu.edu.cn
                [1]

                These authors contributed equally to this work.

                Article
                S2405-8440(23)08439-6 e21231
                10.1016/j.heliyon.2023.e21231
                10660019
                5f2f187a-26b6-408f-b1f2-5a5420597868
                © 2023 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 17 May 2023
                : 2 October 2023
                : 18 October 2023
                Categories
                Research Article

                vaccarin,acute kidney injury,cisplatin,inflammation,nox4
                vaccarin, acute kidney injury, cisplatin, inflammation, nox4

                Comments

                Comment on this article