6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Infection Prevention Measures for Surgical Procedures during a Middle East Respiratory Syndrome Outbreak in a Tertiary Care Hospital in South Korea

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In 2015, we experienced the largest in-hospital Middle East respiratory syndrome (MERS) outbreak outside the Arabian Peninsula. We share the infection prevention measures for surgical procedures during the unexpected outbreak at our hospital. We reviewed all forms of related documents and collected information through interviews with healthcare workers of our hospital. After the onset of outbreak, a multidisciplinary team devised institutional MERS-control guidelines. Two standard operating rooms were converted to temporary negative-pressure rooms by physically decreasing the inflow air volume (−4.7 Pa in the main room and −1.2 Pa in the anteroom). Healthcare workers were equipped with standard or enhanced personal protective equipment according to the MERS-related patient’s profile and symptoms. Six MERS-related patients underwent emergency surgery, including four MERS-exposed and two MERS-confirmed patients. Negative conversion of MERS-CoV polymerase chain reaction tests was noticed for MERS-confirmed patients before surgery. MERS-exposed patients were also tested twice preoperatively, all of which were negative. All operative procedures in MERS-related patients were performed without specific adverse events or perioperative MERS transmission. Our experience with setting up a temporary negative-pressure operation room and our conservative approach for managing MERS-related patients can be referred in cases of future unexpected MERS outbreaks in non-endemic countries.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.

          A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study

            Summary Background In 2015, a large outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection occurred following a single patient exposure in an emergency room at the Samsung Medical Center, a tertiary-care hospital in Seoul, South Korea. We aimed to investigate the epidemiology of MERS-CoV outbreak in our hospital. Methods We identified all patients and health-care workers who had been in the emergency room with the index case between May 27 and May 29, 2015. Patients were categorised on the basis of their exposure in the emergency room: in the same zone as the index case (group A), in different zones except for overlap at the registration area or the radiology suite (group B), and in different zones (group C). We documented cases of MERS-CoV infection, confirmed by real-time PCR testing of sputum samples. We analysed attack rates, incubation periods of the virus, and risk factors for transmission. Findings 675 patients and 218 health-care workers were identified as contacts. MERS-CoV infection was confirmed in 82 individuals (33 patients, eight health-care workers, and 41 visitors). The attack rate was highest in group A (20% [23/117] vs 5% [3/58] in group B vs 1% [4/500] in group C; p<0·0001), and was 2% (5/218) in health-care workers. After excluding nine cases (because of inability to determine the date of symptom onset in six cases and lack of data from three visitors), the median incubation period was 7 days (range 2–17, IQR 5–10). The median incubation period was significantly shorter in group A than in group C (5 days [IQR 4–8] vs 11 days [6–12]; p<0·0001). There were no confirmed cases in patients and visitors who visited the emergency room on May 29 and who were exposed only to potentially contaminated environment without direct contact with the index case. The main risk factor for transmission of MERS-CoV was the location of exposure. Interpretation Our results showed increased transmission potential of MERS-CoV from a single patient in an overcrowded emergency room and provide compelling evidence that health-care facilities worldwide need to be prepared for emerging infectious diseases. Funding None.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MERS coronavirus: diagnostics, epidemiology and transmission

              The first known cases of Middle East respiratory syndrome (MERS), associated with infection by a novel coronavirus (CoV), occurred in 2012 in Jordan but were reported retrospectively. The case first to be publicly reported was from Jeddah, in the Kingdom of Saudi Arabia (KSA). Since then, MERS-CoV sequences have been found in a bat and in many dromedary camels (DC). MERS-CoV is enzootic in DC across the Arabian Peninsula and in parts of Africa, causing mild upper respiratory tract illness in its camel reservoir and sporadic, but relatively rare human infections. Precisely how virus transmits to humans remains unknown but close and lengthy exposure appears to be a requirement. The KSA is the focal point of MERS, with the majority of human cases. In humans, MERS is mostly known as a lower respiratory tract (LRT) disease involving fever, cough, breathing difficulties and pneumonia that may progress to acute respiratory distress syndrome, multiorgan failure and death in 20 % to 40 % of those infected. However, MERS-CoV has also been detected in mild and influenza-like illnesses and in those with no signs or symptoms. Older males most obviously suffer severe disease and MERS patients often have comorbidities. Compared to severe acute respiratory syndrome (SARS), another sometimes- fatal zoonotic coronavirus disease that has since disappeared, MERS progresses more rapidly to respiratory failure and acute kidney injury (it also has an affinity for growth in kidney cells under laboratory conditions), is more frequently reported in patients with underlying disease and is more often fatal. Most human cases of MERS have been linked to lapses in infection prevention and control (IPC) in healthcare settings, with approximately 20 % of all virus detections reported among healthcare workers (HCWs) and higher exposures in those with occupations that bring them into close contact with camels. Sero-surveys have found widespread evidence of past infection in adult camels and limited past exposure among humans. Sensitive, validated reverse transcriptase real-time polymerase chain reaction (RT-rtPCR)-based diagnostics have been available almost from the start of the emergence of MERS. While the basic virology of MERS-CoV has advanced over the past three years, understanding of the interplay between camel, environment, and human remains limited. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0439-5) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                krpeck@skku.edu
                prudence2@hanmail.net
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                15 January 2020
                15 January 2020
                2020
                : 10
                : 325
                Affiliations
                [1 ]ISNI 0000 0001 2181 989X, GRID grid.264381.a, Department of Anesthesiology and Pain Medicine, Samsung Medical Center, , Sungkyunkwan University School of Medicine, ; Seoul, Korea
                [2 ]Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
                Author information
                http://orcid.org/0000-0002-7584-2670
                Article
                57216
                10.1038/s41598-019-57216-x
                6962363
                31941957
                5f3e76f4-1a4e-4421-b294-3a3b0c39ac48
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 September 2019
                : 23 December 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                preventive medicine,viral infection
                Uncategorized
                preventive medicine, viral infection

                Comments

                Comment on this article