162
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PRAME Is a Golgi-Targeted Protein That Associates with the Elongin BC Complex and Is Upregulated by Interferon-Gamma and Bacterial PAMPs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Preferentially expressed antigen in melanoma (PRAME) has been described as a cancer-testis antigen and is associated with leukaemias and solid tumours. Here we show that PRAME gene transcription in leukaemic cell lines is rapidly induced by exposure of cells to bacterial PAMPs (pathogen associated molecular patterns) in combination with type 2 interferon (IFNγ). Treatment of HL60 cells with lipopolysaccharide or peptidoglycan in combination with IFNγ resulted in a rapid and transient induction of PRAME transcription, and increased association of PRAME transcripts with polysomes. Moreover, treatment with PAMPs/IFNγ also modulated the subcellular localisation of PRAME proteins in HL60 and U937 cells, resulting in targeting of cytoplasmic PRAME to the Golgi. Affinity purification studies revealed that PRAME associates with Elongin B and Elongin C, components of Cullin E3 ubiquitin ligase complexes. This occurs via direct interaction of PRAME with Elongin C, and PRAME colocalises with Elongins in the Golgi after PAMP/IFNγ treatment. PRAME was also found to co-immunoprecipitate core histones, consistent with its partial localisation to the nucleus, and was found to bind directly to histone H3 in vitro. Thus, PRAME is upregulated by signalling pathways that are activated in response to infection/inflammation, and its product may have dual functions as a histone-binding protein, and in directing ubiquitylation of target proteins for processing in the Golgi.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid identification of proteins by peptide-mass fingerprinting.

          Developments in 'soft' ionisation techniques have revolutionized mass-spectro-metric approaches for the analysis of protein structure. For more than a decade, such techniques have been used, in conjuction with digestion b specific proteases, to produce accurate peptide molecular weight 'fingerprints' of proteins. These fingerprints have commonly been used to screen known proteins, in order to detect errors of translation, to characterize post-translational modifications and to assign diulphide bonds. However, the extent to which peptide-mass information can be used alone to identify unknown sample proteins, independent of other analytical methods such as protein sequence analysis, has remained largely unexplored. We report here on the development of the molecular weight search (MOWSE) peptide-mass database at the SERC Daresbury Laboratory. Practical experience has shown that sample proteins can be uniquely identified from a few as three or four experimentally determined peptide masses when these are screened against a fragment database that is derived from over 50 000 proteins. Experimental errors of a few Daltons are tolerated by the scoring algorithms, thus permitting the use of inexpensive time-of-flight mass spectrometers. As with other types of physical data, such as amino-acid composition or linear sequence, peptide masses provide a set of determinants that are sufficiently discriminating to identify or match unknown sample proteins. Peptide-mass fingerprints can prove as discriminating as linear peptide sequences, but can be obtained in a fraction of the time using less protein. In many cases, this allows for a rapid identification of a sample protein before committing it to protein sequence analysis. Fragment masses also provide information, at the protein level, that is complementary to the information provided by large-scale DNA sequencing or mapping projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor.

            Melanoma lines MEL.A and MEL.B were derived from metastases removed from patient LB33 in 1988 and 1993, respectively. The MEL.A cells express several antigens recognized by autologous cytolytic T lymphocytes (CTL) on HLA class I molecules. The MEL.B cells have lost expression of all class I molecules except for HLA-A24. By stimulating autologous lymphocytes with MEL.B, we obtained an HLA-A24-restricted CTL clone that lysed these cells. A novel gene, PRAME, encodes the antigen. It is expressed in a large proportion of tumors and also in some normal tissues, albeit at a lower level. Surprisingly, the CTL failed to lyse MEL.A, even though these cells expressed the gene PRAME. The CTL expresses an NK inhibitory receptor that inhibits its lytic activity upon interaction with HLA-Cw7 molecules, which are present on MEL.A cells and not on MEL.B. Such CTL, active against tumor cells showing partial HLA loss, may constitute an intermediate line of anti-tumor defense between the CTL, which recognize highly specific tumor antigens, and the NK cells, which recognize HLA loss variants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling.

              Retinoic acid (RA) induces proliferation arrest, differentiation, and apoptosis, and defects in retinoic acid receptor (RAR) signaling have been implicated in cancer. The human tumor antigen PRAME is overexpressed in a variety of cancers, but its function has remained unclear. We identify here PRAME as a dominant repressor of RAR signaling. PRAME binds to RAR in the presence of RA, preventing ligand-induced receptor activation and target gene transcription through recruitment of Polycomb proteins. PRAME is present at RAR target promoters and inhibits RA-induced differentiation, growth arrest, and apoptosis. Conversely, knockdown of PRAME expression by RNA interference in RA-resistant human melanoma restores RAR signaling and reinstates sensitivity to the antiproliferative effects of RA in vitro and in vivo. Our data suggest that overexpression of PRAME frequently observed in human cancers confers growth or survival advantages by antagonizing RAR signaling.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                27 February 2013
                : 8
                : 2
                : e58052
                Affiliations
                [1]School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
                New York University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FRW DMH. Performed the experiments: FRW JF HMC NT. Analyzed the data: FRW JF HMC KS DMH. Contributed reagents/materials/analysis tools: FHF JF AB NT KS. Wrote the paper: FRW DMH.

                Article
                PONE-D-12-00556
                10.1371/journal.pone.0058052
                3584020
                23460923
                6040c4ed-f22a-49f7-98aa-c26e819e04a8
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 January 2012
                : 30 January 2013
                Page count
                Pages: 10
                Funding
                This work was funded by Leukaemia Lymphoma Research via a clinical training fellowship to FRW (07064). JF was funded by the Royal Pharmaceutical Society of Great Britain via an Academic Excellence Award to DMH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Hemoproteins
                Protein Interactions
                Immunology
                Immunity
                Innate Immunity
                Molecular Cell Biology
                Proteomics
                Protein Interactions
                Medicine
                Clinical Immunology
                Immunity
                Innate Immunity
                Hematology
                Oncology
                Basic Cancer Research
                Cancer Detection and Diagnosis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article