24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Integration of Nature-Inspired Algorithms with Least Square Support Vector Regression Models: Application to Modeling River Dissolved Oxygen Concentration

      , , , , ,
      Water
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current study investigates an improved version of Least Square Support Vector Machines integrated with a Bat Algorithm (LSSVM-BA) for modeling the dissolved oxygen (DO) concentration in rivers. The LSSVM-BA model results are compared with those obtained using M5 Tree and Multivariate Adaptive Regression Spline (MARS) models to show the efficacy of this novel integrated model. The river water quality data at three monitoring stations located in the USA are considered for the simulation of DO concentration. Eight input combinations of four water quality parameters, namely, water temperature, discharge, pH, and specific conductance, are used to simulate the DO concentration. The results revealed the superiority of the LSSVM-BA model over the M5 Tree and MARS models in the prediction of river DO. The accuracy of the LSSVM-BA model compared with those of the M5 Tree and MARS models is found to increase by 20% and 42%, respectively, in terms of the root-mean-square error. All the predictive models are found to perform best when all the four water quality variables are used as input, which indicates that it is possible to supply more information to the predictive model by way of incorporation of all the water quality variables.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree

          Ozgur Kisi (2015)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Support vector machines in water quality management.

            Support vector classification (SVC) and regression (SVR) models were constructed and applied to the surface water quality data to optimize the monitoring program. The data set comprised of 1500 water samples representing 10 different sites monitored for 15 years. The objectives of the study were to classify the sampling sites (spatial) and months (temporal) to group the similar ones in terms of water quality with a view to reduce their number; and to develop a suitable SVR model for predicting the biochemical oxygen demand (BOD) of water using a set of variables. The spatial and temporal SVC models rendered grouping of 10 monitoring sites and 12 sampling months into the clusters of 3 each with misclassification rates of 12.39% and 17.61% in training, 17.70% and 26.38% in validation, and 14.86% and 31.41% in test sets, respectively. The SVR model predicted water BOD values in training, validation, and test sets with reasonably high correlation (0.952, 0.909, and 0.907) with the measured values, and low root mean squared errors of 1.53, 1.44, and 1.32, respectively. The values of the performance criteria parameters suggested for the adequacy of the constructed models and their good predictive capabilities. The SVC model achieved a data reduction of 92.5% for redesigning the future monitoring program and the SVR model provided a tool for the prediction of the water BOD using set of a few measurable variables. The performance of the nonlinear models (SVM, KDA, KPLS) was comparable and these performed relatively better than the corresponding linear methods (DA, PLS) of classification and regression modeling.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model

                Bookmark

                Author and article information

                Journal
                WATEGH
                Water
                Water
                MDPI AG
                2073-4441
                September 2018
                August 23 2018
                : 10
                : 9
                : 1124
                Article
                10.3390/w10091124
                60f5bb5f-9add-4b1f-93a7-849c34a0af02
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article