5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plasmid-mediated catabolism for the removal of xenobiotics from the environment

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references216

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review

          Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main purpose of this review is to provide an overview of current knowledge of bacteria, halophilic archaea, fungi and algae mediated degradation/transformation of PAHs. In addition, factors affecting PAHs degradation in the environment, recent advancement in genetic, genomic, proteomic and metabolomic techniques are also highlighted with an aim to facilitate the development of a new insight into the bioremediation of PAH in the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Studying plasmid horizontal transfer in situ: a critical review.

            This review deals with the prospective, experimental documentation of horizontal gene transfer (HGT) and its role in real-time, local adaptation. We have focused on plasmids and their function as an accessory and/or adaptive gene pool. Studies of the extent of HGT in natural environments have identified certain hot spots, and many of these involve biofilms. Biofilms are uniquely suited for HGT, as they sustain high bacterial density and metabolic activity, even in the harshest environments. Single-cell detection of donor, recipient and transconjugant bacteria in various natural environments, combined with individual-based mathematical models, has provided a new platform for HGT studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial degradation of organophosphorus compounds.

              Synthetic organophosphorus compounds are used as pesticides, plasticizers, air fuel ingredients and chemical warfare agents. Organophosphorus compounds are the most widely used insecticides, accounting for an estimated 34% of world-wide insecticide sales. Contamination of soil from pesticides as a result of their bulk handling at the farmyard or following application in the field or accidental release may lead occasionally to contamination of surface and ground water. Several reports suggest that a wide range of water and terrestrial ecosystems may be contaminated with organophosphorus compounds. These compounds possess high mammalian toxicity and it is therefore essential to remove them from the environments. In addition, about 200,000 metric tons of nerve (chemical warfare) agents have to be destroyed world-wide under Chemical Weapons Convention (1993). Bioremediation can offer an efficient and cheap option for decontamination of polluted ecosystems and destruction of nerve agents. The first micro-organism that could degrade organophosphorus compounds was isolated in 1973 and identified as Flavobacterium sp. Since then several bacterial and a few fungal species have been isolated which can degrade a wide range of organophosphorus compounds in liquid cultures and soil systems. The biochemistry of organophosphorus compound degradation by most of the bacteria seems to be identical, in which a structurally similar enzyme called organophosphate hydrolase or phosphotriesterase catalyzes the first step of the degradation. organophosphate hydrolase encoding gene opd (organophosphate degrading) gene has been isolated from geographically different regions and taxonomically different species. This gene has been sequenced, cloned in different organisms, and altered for better activity and stability. Recently, genes with similar function but different sequences have also been isolated and characterized. Engineered microorganisms have been tested for their ability to degrade different organophosphorus pollutants, including nerve agents. In this article, we review and propose pathways for degradation of some organophosphorus compounds by microorganisms. Isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation are discussed. The major achievements and technological advancements towards bioremediation of organophosphorus compounds, limitations of available technologies and future challenge are also discussed.
                Bookmark

                Author and article information

                Journal
                Journal of Hazardous Materials
                Journal of Hazardous Materials
                Elsevier BV
                03043894
                October 2021
                October 2021
                : 420
                : 126618
                Article
                10.1016/j.jhazmat.2021.126618
                34329102
                6110535f-ab4f-4c11-96be-167ab24481e9
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article