7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modified magnetic chitosan materials for heavy metal adsorption: a review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this review, the preparation of magnetic chitosan, adsorption performance of modified magnetic chitosan materials on heavy metal ions, and the adsorption mechanism are classified and summarized.

          Abstract

          Magnetic chitosan materials have the characteristics of both chitosan and magnetic particle nuclei, showing the characteristics of easy separation and recovery, strong adsorption capacity and high mechanical strength, and have received extensive attention in adsorption, especially in the treatment of heavy metal ions. In order to further improve its performance, many studies have modified magnetic chitosan materials. This review discusses the strategies for the preparation of magnetic chitosan using coprecipitation, crosslinking, and other methods in detail. Besides, this review mainly summarizes the application of modified magnetic chitosan materials in the removal of heavy metal ions in wastewater in recent years. Finally, this review also discusses the adsorption mechanism, and puts forward the prospect of the future development of magnetic chitosan in wastewater treatment.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Modelling and Interpretation of Adsorption Isotherms

          The need to design low-cost adsorbents for the detoxification of industrial effluents has been a growing concern for most environmental researchers. So modelling of experimental data from adsorption processes is a very important means of predicting the mechanisms of various adsorption systems. Therefore, this paper presents an overall review of the applications of adsorption isotherms, the use of linear regression analysis, nonlinear regression analysis, and error functions for optimum adsorption data analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

            Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biosorption of heavy metals by Saccharomyces cerevisiae: a review.

              Heavy metal pollution has become one of the most serious environmental problems today. Biosorption, using biomaterials such as bacteria, fungi, yeast and algae, is regarded as a cost-effective biotechnology for the treatment of high volume and low concentration complex wastewaters containing heavy metal(s) in the order of 1 to 100 mg/L. Among the promising biosorbents for heavy metal removal which have been researched during the past decades, Saccharomyces cerevisiae has received increasing attention due to the unique nature in spite of its mediocre capacity for metal uptake compared with other fungi. S. cerevisiae is widely used in food and beverage production, is easily cultivated using cheap media, is also a by-product in large quantity as a waste of the fermentation industry, and is easily manipulated at molecular level. The state of the art in the field of biosorption of heavy metals by S. cerevisiae not only in China, but also worldwide, is reviewed in this paper, based on a substantial number of relevant references published recently on the background of biosorption achievements and development. Characteristics of S. cerevisiae in heavy metal biosorption are extensively discussed. The yeast can be studied in various forms for different purposes. Metal-binding capacity for various heavy metals by S. cerevisiae under different conditions is compared. Lead and uranium, for instances, could be removed from dilute solutions more effectively in comparison with other metals. The yeast biosorption largely depends on parameters such as pH, the ratio of the initial metal ion and initial biomass concentration, culture conditions, presence of various ligands and competitive metal ions in solution and to a limited extent on temperature. An assessment of the isotherm equilibrium model, as well as kinetics was performed. The mechanisms of biosorption are understood only to a limited extent. Elucidation of the mechanism of metal uptake is a real challenge in the field of biosorption. Various mechanism assumptions of metal uptake by S. cerevisiae are summarized.
                Bookmark

                Author and article information

                Contributors
                Journal
                RSCACL
                RSC Advances
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                February 21 2023
                2023
                : 13
                : 10
                : 6713-6736
                Affiliations
                [1 ]Marine College, Shandong University, Weihai 264209, China
                [2 ]Shandong University-Weihai Research Institute of Industrial Technology, Weihai 264209, China
                Article
                10.1039/D2RA07112F
                36860541
                6133677c-d836-4dc4-beb2-210c965dd40f
                © 2023

                http://creativecommons.org/licenses/by-nc/3.0/

                History

                Comments

                Comment on this article