9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A (delayed) history of the brain lymphatic system

      , , ,
      Nature Medicine
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI

          Here, we report the existence of meningeal lymphatic vessels in human and nonhuman primates (common marmoset monkeys) and the feasibility of noninvasively imaging and mapping them in vivo with high-resolution, clinical MRI. On T2-FLAIR and T1-weighted black-blood imaging, lymphatic vessels enhance with gadobutrol, a gadolinium-based contrast agent with high propensity to extravasate across a permeable capillary endothelial barrier, but not with gadofosveset, a blood-pool contrast agent. The topography of these vessels, running alongside dural venous sinuses, recapitulates the meningeal lymphatic system of rodents. In primates, meningeal lymphatics display a typical panel of lymphatic endothelial markers by immunohistochemistry. This discovery holds promise for better understanding the normal physiology of lymphatic drainage from the central nervous system and potential aberrations in neurological diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance.

            Cerebrospinal fluid (CSF) drainage pathways from the rat brain were investigated by the injection of 50 microliters Indian ink into the cisterna magna. The distribution of the ink, as it escaped from the cranial CSF space, was documented in 2 mm thick slices of brain and skull cleared in cedar wood oil and in decalcified paraffin sections. Following injection of the ink, deep cervical lymph nodes were selectively blackened within 30 min and lumbar para-aortic nodes within 6 h. Within the cranial cavity, carbon particles accumulated in the basal cisterns but were also distributed in the paravascular spaces around the middle cerebral arteries and the nasal-olfactory artery. Carbon particles in the subarachnoid space beneath the olfactory bulbs drained directly into discrete channels which passed through the cribriform plate and into lymphatics in the nasal submucosa. Although ink was distributed along the subarachnoid space of the optic nerves and entered the cochlea, the nasal route was the only direct connection between cranial CSF and lymphatics. Arachnoid villi associated with superior and inferior sagittal sinuses were identified and a minor amount of drainage of ink into dural lymphatics was also observed. This study demonstrates the direct drainage of cerebrospinal fluid through the cribriform plate in anatomically defined channels which connect with the nasal lymphatics.(ABSTRACT TRUNCATED AT 250 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efflux of radiolabeled polyethylene glycols and albumin from rat brain.

              Experiments were carried out to evaluate the role of convection in the removal of large molecules from brain interstitial fluid. Radiolabeled test compounds were injected into the caudate nucleus of anesthetized rats through a guide cannula implanted 1 wk previously and the concentrations of isotope in brain and cerebrospinal fluid (CSF) determined at various times after injection. Control studies with 22Na indicate that the permeability of the blood-brain barrier is normal in tissue surrounding the intracerebral injection cannula. For 69,000 dalton serum albumin, 4,000 dalton polyethylene glycol, and 900 dalton polyethylene glycol, clearance from brain approximates a single exponential decay with half times of disappearance of 12.2, 12.6, and 14.4 h, respectively. Similarly in efflux rate, despite a fivefold difference in diffusion coefficient, is consistent with convective losses from brain, and the maximal rate of interstitial fluid removal estimated on the basis of these data is 0.11 microliter.g brain-1.min-1. Only 10-20% of total efflux is into bulk CSF withdrawn from the cisterna magna.
                Bookmark

                Author and article information

                Journal
                Nature Medicine
                Nat Med
                Springer Nature
                1078-8956
                1546-170X
                April 2019
                April 4 2019
                April 2019
                : 25
                : 4
                : 538-540
                Article
                10.1038/s41591-019-0417-3
                30948855
                6163edf3-7e5f-4303-944c-153e659e4864
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article