236
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Nrf2/ARE Pathway: A Promising Target to Counteract Mitochondrial Dysfunction in Parkinson's Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondrial dysfunction is a prominent feature of various neurodegenerative diseases as strict regulation of integrated mitochondrial functions is essential for neuronal signaling, plasticity, and transmitter release. Many lines of evidence suggest that mitochondrial dysfunction plays a central role in the pathogenesis of Parkinson's disease (PD). Several PD-associated genes interface with mitochondrial dynamics regulating the structure and function of the mitochondrial network. Mitochondrial dysfunction can induce neuron death through a plethora of mechanisms. Both mitochondrial dysfunction and neuroinflammation, a common denominator of PD, lead to an increased production of reactive oxygen species, which are detrimental to neurons. The transcription factor nuclear factor E2-related factor 2 (Nrf2, NFE2L2) is an emerging target to counteract mitochondrial dysfunction and its consequences in PD. Nrf2 activates the antioxidant response element (ARE) pathway, including a battery of cytoprotective genes such as antioxidants and anti-inflammatory genes and several transcription factors involved in mitochondrial biogenesis. Here, the current knowledge about the role of mitochondrial dysfunction in PD, Nrf2/ARE stress-response mechanisms, and the evidence for specific links between this pathway and PD are summarized. The neuroprotection of nigral dopaminergic neurons by the activation of Nrf2 through several inducers in PD is also emphasized as a promising therapeutic approach.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial evolution.

          The serial endosymbiosis theory is a favored model for explaining the origin of mitochondria, a defining event in the evolution of eukaryotic cells. As usually described, this theory posits that mitochondria are the direct descendants of a bacterial endosymbiont that became established at an early stage in a nucleus-containing (but amitochondriate) host cell. Gene sequence data strongly support a monophyletic origin of the mitochondrion from a eubacterial ancestor shared with a subgroup of the alpha-Proteobacteria. However, recent studies of unicellular eukaryotes (protists), some of them little known, have provided insights that challenge the traditional serial endosymbiosis-based view of how the eukaryotic cell and its mitochondrion came to be. These data indicate that the mitochondrion arose in a common ancestor of all extant eukaryotes and raise the possibility that this organelle originated at essentially the same time as the nuclear component of the eukaryotic cell rather than in a separate, subsequent event.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region.

            Hypersensitive site 2 located in the beta-globin locus control region confers high levels of expression to the genes of the beta-globin cluster. A tandem repeat of the consensus sequence for the transcription factors AP1 and NF-E2 (activating protein 1 and nuclear factor erythroid 2, respectively) is present within hypersensitive site 2 and is absolutely required for strong enhancer activity. This sequence binds, in vitro and in vivo, to ubiquitous proteins of the AP1 family and to the recently cloned erythroid-specific transcription factor NF-E2. Using the tandem repeat as a recognition site probe to screen a lambda gt11 cDNA expression library from K562 cells, we isolated several DNA binding proteins. Here, we report the characterization of one of the clones isolated. The gene, which we named Nrf2 (NF-E2-related factor 2), is encoded within a 2.2-kb transcript and predicts a 66-kDa protein with a basic leucine zipper DNA binding domain highly homologous to that of NF-E2. Although Nrf2 is expressed ubiquitously, a role of this protein in mediating enhancer activity of hypersensitive site 2 in erythroid cells cannot be excluded. In this respect, Nrf2 contains a powerful acidic activation domain that may participate in the transcriptional stimulation of beta-globin genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ROS, mitochondria and the regulation of autophagy.

              Accumulation of reactive oxygen species (ROS) is an oxidative stress to which cells respond by activating various defense mechanisms or, finally, by dying. At low levels, however, ROS act as signaling molecules in various intracellular processes. Autophagy, a process by which eukaryotic cells degrade and recycle macromolecules and organelles, has an important role in the cellular response to oxidative stress. Here, we review recent reports suggesting a regulatory role for ROS of mitochondrial origin as signaling molecules in autophagy, leading, under different circumstances, to either survival or cell death. We then discuss the relationship between mitochondria and autophagosomes and propose that mitochondria have an essential role in autophagosome biogenesis.
                Bookmark

                Author and article information

                Journal
                Parkinsons Dis
                PD
                Parkinson's Disease
                SAGE-Hindawi Access to Research
                2042-0080
                2011
                22 February 2011
                : 2011
                : 314082
                Affiliations
                Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
                Author notes
                *Kemal Ugur Tufekci: ugurtufekci@ 123456gmail.com

                Academic Editor: Charleen T. Chu

                Article
                10.4061/2011/314082
                3049335
                21403858
                617200fa-0b8d-460d-9327-2c07a9a8b853
                Copyright © 2011 Kemal Ugur Tufekci et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 September 2010
                : 25 November 2010
                : 3 January 2011
                Categories
                Review Article

                Neurology
                Neurology

                Comments

                Comment on this article