42
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ARUK Consortium, GERAD/PERADES, CHARGE, ADGC, EADI
      Nature Genetics
      Springer Science and Business Media LLC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P < 1 × 10(-4)) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations (P < 5 × 10(-8)) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 × 10(-10), odds ratio (OR) = 0.68, minor allele frequency (MAF)cases = 0.0059, MAFcontrols = 0.0093), a risk variant in ABI3 (rs616338: p.Ser209Phe, P = 4.56 × 10(-10), OR = 1.43, MAFcases = 0.011, MAFcontrols = 0.008), and a new genome-wide significant variant in TREM2 (rs143332484: p.Arg62His, P = 1.55 × 10(-14), OR = 1.67, MAFcases = 0.0143, MAFcontrols = 0.0089), a known susceptibility gene for Alzheimer's disease. These protein-altering changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy.

          Haplodeficiency of the microglia gene TREM2 increases risk for late-onset Alzheimer's disease (AD) but the mechanisms remain uncertain. To investigate this, we used high-resolution confocal and super-resolution (STORM) microscopy in AD-like mice and human AD tissue. We found that microglia processes, rich in TREM2, tightly surround early amyloid fibrils and plaques promoting their compaction and insulation. In Trem2- or DAP12-haplodeficient mice and in humans with R47H TREM2 mutations, microglia had a markedly reduced ability to envelop amyloid deposits. This led to an increase in less compact plaques with longer and branched amyloid fibrils resulting in greater surface exposure to adjacent neurites. This was associated with more severe neuritic tau hyperphosphorylation and axonal dystrophy around amyloid deposits. Thus, TREM2 deficiency may disrupt the formation of a neuroprotective microglia barrier that regulates amyloid compaction and insulation. Pharmacological modulation of this barrier could be a novel therapeutic strategy for AD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease.

            Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau), and Aβ₄₂ are established biomarkers for Alzheimer's disease (AD) and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n = 1,269), identifying three genome-wide significant loci for CSF tau and ptau: rs9877502 (p = 4.89 × 10⁻⁹ for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (p = 1.07 × 10⁻⁸ and p = 3.22 × 10⁻⁹ for tau and ptau, respectively), located at 9p24.2 within GLIS3 and rs6922617 (p = 3.58 × 10⁻⁸ for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent data sets, rs9877502 showed a strong association with risk for AD, tangle pathology, and global cognitive decline (p = 2.67 × 10⁻⁴, 0.039, 4.86 × 10⁻⁵, respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Common and rare variants in multifactorial susceptibility to common diseases.

              Here, we give a historical overview of the search for genetic variants that influence the susceptibility of an individual to a chronic disease, from RA Fisher's seminal work to the current excitement of whole-genome association studies (WGAS). We then discuss the concepts behind the identification of common variants as disease causal factors and contrast them to the basic ideas that underlie the rare variant hypothesis. The identification of rare variants involves the careful selection of candidate genes to examine, the availability of highly efficient resequencing techniques and the appropriate assessment of the functional consequences of the implicated variant. We believe that this strategy can be successfully applied at present in order to unravel the contribution of rare variants to the multifactorial inheritance of common diseases, which could lead to the implementation of much needed preventative screening schemes.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Genetics
                Nat Genet
                Springer Science and Business Media LLC
                1061-4036
                1546-1718
                September 2017
                July 17 2017
                September 2017
                : 49
                : 9
                : 1373-1384
                Article
                10.1038/ng.3916
                5669039
                28714976
                617f7718-b107-4275-8769-0494d725e10a
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article