9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prevalence and persistence of transmitted drug resistance mutations in the German HIV-1 Seroconverter Study Cohort

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prevalence of transmitted drug resistance (TDR) in antiretroviral therapy (ART)-naïve individuals remains stable in most developed countries despite a decrease in the prevalence of acquired drug resistance. This suggests that persistence and further transmission of HIV-1 that encodes transmitted drug resistance mutations (TDRMs) is occurring in ART-naïve individuals. In this study, we analysed the prevalence and persistence of TDRMs in the protease and reverse transcriptase-sequences of ART-naïve patients within the German HIV-1 Seroconverter Study Cohort who were infected between 1996 and 2017. The prevalence of TDRMs and baseline susceptibility to antiretroviral drugs were assessed using the Stanford HIVdb list and algorithm. Mean survival times of TDRMs were calculated by Kaplan-Meier analysis. The overall prevalence of TDR was 17.2% (95% CI 15.7–18.6, N = 466/2715). Transmitted NNRTI resistance was observed most frequently with 7.8% (95% CI 6.8–8.8), followed by NRTI resistance (5.0%, 95% CI 4.2–5.9) and PI resistance (2.8%, 95% CI 2.2–3.4). Total TDR (OR = 0.89, p = 0.034) and transmitted NRTI resistance (OR = 0.65, p = 0.000) decreased between 1996 and 2017 but has remained stable during the last decade. Viral susceptibility to NNRTIs (6.5%-6.9% for individual drugs) was mainly reduced, while <3% of the recommended NRTIs and PIs were affected. The longest mean survival times were calculated for the NNRTI mutations K103N (5.3 years, 95% CI 4.2–5.6) and E138A/G/K (8.0 years, 95% CI 5.8–10.2 / 7.9 years, 95% CI 5.4–10.3 / 6.7 years, 95% CI 6.7–6.7) and for the NRTI mutation M41L (6.4 years, 95% CI 6.0–6.7).The long persistence of single TDRMs indicates that onward transmission from ART-naïve individuals is the main cause for TDR in Germany. Transmitted NNRTI resistance was the most frequent TDR, showing simultaneously the highest impact on baseline ART susceptibility and on TDRMs with prolonged persistence. These results give cause for concern regarding the use of NNRTI in first-line regimens.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis.

          To investigate the extent to which drug resistance mutations are missed by standard genotyping methods, we analyzed the same plasma samples from 26 patients with suspected multidrug-resistant human immunodeficiency virus type 1 by using a newly developed single-genome sequencing technique and compared it to standard genotype analysis. Plasma samples were obtained from patients with prior exposure to at least two antiretroviral drug classes and who were on a failing antiretroviral regimen. Standard genotypes were obtained by reverse transcriptase (RT)-PCR and sequencing of the bulk PCR product. For single-genome sequencing, cDNA derived from plasma RNA was serially diluted to 1 copy per reaction, and a region encompassing p6, protease, and a portion of RT was amplified and sequenced. Sequences from 15 to 46 single viral genomes were obtained from each plasma sample. Drug resistance mutations identified by single-genome sequencing were not detected by standard genotype analysis in 24 of the 26 patients studied. Mutations present in less than 10% of single genomes were almost never detected in standard genotypes (1 of 86). Similarly, mutations present in 10 to 35% of single genomes were detected only 25% of the time in standard genotypes. For example, in one patient, 10 mutations identified by single-genome sequencing and conferring resistance to protease inhibitors (PIs), nucleoside analog reverse transcriptase inhibitors, and nonnucleoside reverse transcriptase inhibitors (NNRTIs) were not detected by standard genotyping methods. Each of these mutations was present in 5 to 20% of the 20 genomes analyzed; 15% of the genomes in this sample contained linked PI mutations, none of which were present in the standard genotype. In another patient sample, 33% of genomes contained five linked NNRTI resistance mutations, none of which were detected by standard genotype analysis. These findings illustrate the inadequacy of the standard genotype for detecting low-frequency drug resistance mutations. In addition to having greater sensitivity, single-genome sequencing identifies linked mutations that confer high-level drug resistance. Such linkage cannot be detected by standard genotype analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transmission networks of HIV-1 among men having sex with men in the Netherlands.

            To obtain insight in the HIV-1 transmission networks among men having sex with men (MSM) in the Netherlands. A phylogenetic tree was constructed from polymerase sequences isolated from 2877 HIV-1 subtype B-infected patients monitored as part of the AIDS Therapy Evaluation in the Netherlands (ATHENA) nationwide observational cohort. For MSM with a known date of infection, the most similar sequences were selected as potential transmission pairs when they clustered with bootstrap value of at least 99%. Time from infection to onward transmission was estimated as the median time between dates of infection for each transmission pair. The source of infections with a resistant strain was traced using the entire phylogenetic tree. Of sequences from 403 MSM with a known date of infection between 1987 and 2007, 175 (43%) formed 63 clusters. Median time to onward transmission was 1.4 years (interquartile range 0.6-2.7). Twenty-four (6%) MSM carried a virus with resistance-related mutations, 13 of these were in eight clusters together with sequences from 28 other patients in the entire phylogenetic tree. Six clusters contained sequences obtained from 29 men all presenting the same resistance-related mutations. From our selection of likely transmission pairs, we conclude that onward transmission of HIV-1 from infected MSM in the Netherlands happens both during and after primary infection. Transmission of resistant strains from the antiretroviral therapy-treated population is limited, but strains with resistance-related mutations have formed subepidemics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Persistence of Transmitted HIV-1 Drug Resistance Mutations Associated with Fitness Costs and Viral Genetic Backgrounds

              Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities) and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V) to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.
                Bookmark

                Author and article information

                Contributors
                Role: Formal analysisRole: InvestigationRole: Writing – original draftRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: Writing – original draftRole: Writing – review & editing
                Role: Formal analysisRole: Writing – review & editing
                Role: ResourcesRole: Writing – review & editing
                Role: ResourcesRole: Writing – review & editing
                Role: ConceptualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                16 January 2019
                2019
                : 14
                : 1
                : e0209605
                Affiliations
                [1 ] Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
                [2 ] Division of HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany
                [3 ] Medical Care Centre Jessen, Berlin, Germany
                [4 ] Medical Care Centre City-Ost, Berlin, Germany
                [5 ] Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
                State of Israel Ministry of Health, ISRAEL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                ‡ These authors also contributed equally to this work.

                ¶ Members of the German HIV-1 Seroconverter Study Group are listed in the acknowledgments.

                Author information
                http://orcid.org/0000-0001-6139-9199
                http://orcid.org/0000-0001-8205-4755
                Article
                PONE-D-18-23255
                10.1371/journal.pone.0209605
                6334938
                30650082
                61ca94cc-d722-4ccd-b6e4-6d0fb6c61207
                © 2019 Machnowska et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 August 2018
                : 7 December 2018
                Page count
                Figures: 5, Tables: 2, Pages: 19
                Funding
                The German Seroconverter Study was partially funded by the Federal Ministry of Health (BMG) and the Federal Ministry of Education and Research (BMBF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Initials of authors who were receiving funds is not applicable.
                Categories
                Research Article
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Immunodeficiency Viruses
                HIV
                HIV-1
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Immunodeficiency Viruses
                HIV
                HIV-1
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Immunodeficiency Viruses
                HIV
                HIV-1
                Biology and Life Sciences
                Organisms
                Viruses
                Immunodeficiency Viruses
                HIV
                HIV-1
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Retroviruses
                Lentivirus
                HIV
                HIV-1
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Retroviruses
                Lentivirus
                HIV
                HIV-1
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Retroviruses
                Lentivirus
                HIV
                HIV-1
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Retroviruses
                Lentivirus
                HIV
                HIV-1
                Biology and Life Sciences
                Microbiology
                Microbial Control
                Antimicrobial Resistance
                Medicine and Health Sciences
                Pharmacology
                Antimicrobial Resistance
                Biology and Life Sciences
                Immunology
                Vaccination and Immunization
                Antiviral Therapy
                Antiretroviral Therapy
                Medicine and Health Sciences
                Immunology
                Vaccination and Immunization
                Antiviral Therapy
                Antiretroviral Therapy
                Medicine and Health Sciences
                Public and Occupational Health
                Preventive Medicine
                Vaccination and Immunization
                Antiviral Therapy
                Antiretroviral Therapy
                Biology and Life Sciences
                Microbiology
                Microbial Mutation
                People and places
                Geographical locations
                Europe
                European Union
                Germany
                Medicine and Health Sciences
                Pharmacology
                Drugs
                Antimicrobials
                Antivirals
                Antiretrovirals
                Biology and Life Sciences
                Microbiology
                Microbial Control
                Antimicrobials
                Antivirals
                Antiretrovirals
                Biology and Life Sciences
                Microbiology
                Virology
                Antivirals
                Antiretrovirals
                Biology and Life Sciences
                Genetics
                Mutation
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Genotyping
                Research and Analysis Methods
                Molecular Biology Techniques
                Genotyping
                Custom metadata
                All relevant data are within the paper and its Supporting Information files. Sequences are available at GenBank (MH470511-MH472562; KX465238-KX467180; KJ769682-KJ771884).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article