30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut Function-Enhancing Properties and Metabolic Effects of Dietary Indigestible Sugars in Rodents and Rabbits

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Indigestible sugars (iS) have received particular interest in food and nutrition research due to their prebiotic properties and other health benefits in humans and animals. The main aim of this review article is to summarize the current knowledge regarding digestive and health-enhancing properties of iS such as sugar alcohols, oligosacharides, and polysaccharides, in rodents and rabbits. Besides ameliorating gut health, iS ingestion also elicits laxative effects and stimulate intestinal permeability and fluid secretions, thereby shortening digesta transit time and increasing stool mass and quality. In rodents and rabbits, as hindgut fermenters, consumption of iS leads to an improved nutrient digestibility, too. Cecal fermentation of iS reduces luminal pH and extends wall tissue facilitating absorption of key dietary minerals across hindgut. The microbial fermentation of iS also enhances excessive blood nitrogen (N) flowing into the cecum to be used as N source for bacterial growth, enhancing N retention in cecotrophic animals. This review also highlights the impact of iS on improving lipid metabolism, mainly by lowering cholesterol and triglycerides levels in the blood. The paper serves as an index of the current knowledge of iS effects in rodents and rabbits and also identifies gaps of knowledge that need to be addressed by future research.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides.

          Resistant starch (RS) is starch and products of its small intestinal digestion that enter the large bowel. It occurs for various reasons including chemical structure, cooking of food, chemical modification, and food mastication. Human colonic bacteria ferment RS and nonstarch polysaccharides (NSP; major components of dietary fiber) to short-chain fatty acids (SCFA), mainly acetate, propionate, and butyrate. SCFA stimulate colonic blood flow and fluid and electrolyte uptake. Butyrate is a preferred substrate for colonocytes and appears to promote a normal phenotype in these cells. Fermentation of some RS types favors butyrate production. Measurement of colonic fermentation in humans is difficult, and indirect measures (e.g., fecal samples) or animal models have been used. Of the latter, rodents appear to be of limited value, and pigs or dogs are preferable. RS is less effective than NSP in stool bulking, but epidemiological data suggest that it is more protective against colorectal cancer, possibly via butyrate. RS is a prebiotic, but knowledge of its other interactions with the microflora is limited. The contribution of RS to fermentation and colonic physiology seems to be greater than that of NSP. However, the lack of a generally accepted analytical procedure that accommodates the major influences on RS means this is yet to be established.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals.

            In addition to metabolic differences, the anatomical, physiological, and biochemical differences in the gastrointestinal (G.I.) tract of the human and common laboratory animals can cause significant variation in drug absorption from the oral route. Among the physiological factors, pH, bile, pancreatic juice, and mucus and fluid volume and content can modify dissolution rates, solubility, transit times, and membrane transport of drug molecules. The microbial content of the G.I. tract can significantly affect the reductive metabolism and enterohepatic circulation of drugs and colonic delivery of formulations. The transit time of dosage forms can be significantly different between species due to different dimensions and propulsive activities of the G.I. tract. The lipid/protein composition of the enterocyte membrane along the G.I. tract can alter binding and passive, active, and carrier-mediated transport of drugs. The location and number of Peyer's patches can also be important in the absorption of large molecules and particulate matter. While small animals, rats, mice, guinea pigs, and rabbits, are most suitable for determining the mechanism of drug absorption and bioavailability values from powder or solution formulations, larger animals, dogs, pigs, and monkeys, are used to assess absorption from formulations. The understanding of physiological, anatomical, and biochemical differences between the G.I. tracts of different animal species can lead to the selection of the correct animal model to mimic the bioavailability of compounds in the human. This article reviews the anatomical, physiological, and biochemical differences between the G.I. tracts of humans and commonly used laboratory animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens.

              The gastrointestinal tract is a complex ecosystem that associates a resident microbiota and cells of various phenotypes lining the epithelial wall expressing complex metabolic activities. The resident microbiota in the digestive tract is a heterogeneous microbial ecosystem containing up to 1 x 10(14) colony-forming units (CFUs) of bacteria. The intestinal microbiota plays an important role in normal gut function and maintaining host health. The host is protected from attack by potentially harmful microbial microorganisms by the physical and chemical barriers created by the gastrointestinal epithelium. The cells lining the gastrointestinal epithelium and the resident microbiota are two partners that properly and/or synergistically function to promote an efficient host system of defence. The gastrointestinal cells that make up the epithelium, provide a physical barrier that protects the host against the unwanted intrusion of microorganisms into the gastrointestinal microbiota, and against the penetration of harmful microorganisms which usurp the cellular molecules and signalling pathways of the host to become pathogenic. One of the basic physiological functions of the resident microbiota is that it functions as a microbial barrier against microbial pathogens. The mechanisms by which the species of the microbiota exert this barrier effect remain largely to be determined. There is increasing evidence that lactobacilli and bifidobacteria, which inhabit the gastrointestinal microbiota, develop antimicrobial activities that participate in the host's gastrointestinal system of defence. The objective of this review is to analyze the in vitro and in vivo experimental and clinical studies in which the antimicrobial activities of selected lactobacilli and bifidobacteria strains have been documented.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                28 September 2015
                October 2015
                : 7
                : 10
                : 8348-8365
                Affiliations
                [1 ]Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna 1210, Austria; jin.xiao@ 123456vetmeduni.ac.at
                [2 ]University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna 1210, Austria; barbara.metzler@ 123456vetmeduni.ac.at
                [3 ]Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna 1210, Austria
                Author notes
                [* ]Correspondence: qendrim.zebeli@ 123456vetmeduni.ac.at ; Tel.: +43-1-250-773-200; Fax: +43-1-250-773-290
                Article
                nutrients-07-05397
                10.3390/nu7105397
                4632417
                26426045
                61daf053-a0f2-4b42-b4de-36ab5b2fc547
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 June 2015
                : 23 September 2015
                Categories
                Review

                Nutrition & Dietetics
                indigestible sugars,cecal fermentation,rodent,rabbits,mineral absorption
                Nutrition & Dietetics
                indigestible sugars, cecal fermentation, rodent, rabbits, mineral absorption

                Comments

                Comment on this article