28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disrupted default mode network connectivity in migraine without aura

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Resting-state functional magnetic resonance imaging (RS-fMRI) has demonstrated disrupted default mode network (DMN) connectivity in a number of pain conditions, including migraine. However, the significance of altered resting-state brain functional connectivity in migraine is still unknown. The present study is aimed to explore DMN functional connectivity in patients with migraine without aura (MwoA) and investigate its clinical significance.

          Methods

          To calculate and compare the resting-state functional connectivity of the DMN in 20 patients with MwoA, during the interictal period, and 20 gender- and age-matched HC, Brain Voyager QX was used. Voxel-based morphometry was used to assess whether between-group differences in DMN functional connectivity were related to structural differences. Secondary analyses explored associations between DMN functional connectivity, clinical and neuropsychological features of migraineurs.

          Results

          In comparison to HC, patients with MwoA showed decreased connectivity in prefrontal and temporal regions of the DMN. Functional abnormalities were unrelated to detectable structural abnormalities or clinical and neuropsychological features of migraineurs.

          Conclusions

          Our study provides further evidence of disrupted DMN connectivity in patients with MwoA. We hypothesize that a DMN dysfunction may be related to behavioural processes such as a maladaptive response to stress which seems to characterize patients with migraine.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Electrophysiological signatures of resting state networks in the human brain.

          Functional neuroimaging and electrophysiological studies have documented a dynamic baseline of intrinsic (not stimulus- or task-evoked) brain activity during resting wakefulness. This baseline is characterized by slow (<0.1 Hz) fluctuations of functional imaging signals that are topographically organized in discrete brain networks, and by much faster (1-80 Hz) electrical oscillations. To investigate the relationship between hemodynamic and electrical oscillations, we have adopted a completely data-driven approach that combines information from simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Using independent component analysis on the fMRI data, we identified six widely distributed resting state networks. The blood oxygenation level-dependent signal fluctuations associated with each network were correlated with the EEG power variations of delta, theta, alpha, beta, and gamma rhythms. Each functional network was characterized by a specific electrophysiological signature that involved the combination of different brain rhythms. Moreover, the joint EEG/fMRI analysis afforded a finer physiological fractionation of brain networks in the resting human brain. This result supports for the first time in humans the coalescence of several brain rhythms within large-scale brain networks as suggested by biophysical studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stress- and allostasis-induced brain plasticity.

            The brain is the key organ of stress processes. It determines what individuals will experience as stressful, it orchestrates how individuals will cope with stressful experiences, and it changes both functionally and structurally as a result of stressful experiences. Within the brain, a distributed, dynamic, and plastic neural circuitry coordinates, monitors, and calibrates behavioral and physiological stress response systems to meet the demands imposed by particular stressors. These allodynamic processes can be adaptive in the short term (allostasis) and maladaptive in the long term (allostatic load). Critically, these processes involve bidirectional signaling between the brain and body. Consequently, allostasis and allostatic load can jointly affect vulnerability to brain-dependent and stress-related mental and physical health conditions. This review focuses on the role of brain plasticity in adaptation to, and pathophysiology resulting from, stressful experiences. It also considers interventions to prevent and treat chronic and prevalent health conditions via allodynamic brain mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathophysiology of migraine.

              Migraine is a collection of perplexing neurological conditions in which the brain and its associated tissues have been implicated as major players during an attack. Once considered exclusively a disorder of blood vessels, compelling evidence has led to the realization that migraine represents a highly choreographed interaction between major inputs from both the peripheral and central nervous systems, with the trigeminovascular system and the cerebral cortex among the main players. Advances in in vivo and in vitro technologies have informed us about the significance to migraine of events such as cortical spreading depression and activation of the trigeminovascular system and its constituent neuropeptides, as well as about the importance of neuronal and glial ion channels and transporters that contribute to the putative cortical excitatory/inhibitory imbalance that renders migraineurs susceptible to an attack. This review focuses on emerging concepts that drive the science of migraine in both a mechanistic direction and a therapeutic direction.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Headache Pain
                J Headache Pain
                The Journal of Headache and Pain
                Springer
                1129-2369
                1129-2377
                2013
                8 November 2013
                : 14
                : 1
                : 89
                Affiliations
                [1 ]Department of Neurology, Second University of Naples, Piazza Miraglia 2 - I-80138, Naples, Italy
                [2 ]Institute for Diagnosis and Care “Hermitage Capodimonte”, Naples, Italy
                [3 ]Neuroradiology Service, Second University of Naples, Naples, Italy
                [4 ]Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
                [5 ]Department of Medicine and Surgery, University of Salerno, Salerno, Italy
                Article
                1129-2377-14-89
                10.1186/1129-2377-14-89
                3832236
                24207164
                621661f4-8feb-4baf-bb46-9f47ed7379d6
                Copyright © 2013 Tessitore et al.; licensee Springer.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 September 2013
                : 18 October 2013
                Categories
                Research Article

                Anesthesiology & Pain management
                resting-state fmri,default mode network,migraine
                Anesthesiology & Pain management
                resting-state fmri, default mode network, migraine

                Comments

                Comment on this article