25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Supplementary Light Source Affects Growth, Metabolism, and Physiology of Adenophora triphylla (Thunb.) A.DC. Seedlings

      research-article
      1 , 1 , 1 , 2 , 3 ,
      BioMed Research International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adenophora triphylla (Thunb.) A.DC., a well-known herbaceous medicinal species, has been reported to protect against human obesity, cancer, and inflammation. Supplementary lighting is a practical strategy to improve crop quality, especially at a propagation stage. However, there has been no study available on the optimal supplementary light source for the commercial production of A. triphylla seedlings. In this study, plug seedlings were cultivated in a greenhouse for four weeks under an average daily light intensity of 490 μmol·m −2·s −1 PPFD coming from the sun and a supplemental lighting (16 h per day) at 120 μmol·m −2·s −1 PPFD provided by high pressure sodium (HPS), metal halide (MH), far-red (FR) light, white LED (red: green: blue = 2:4:3, LED-w), or mixed (red: green: blue = 4:1:4) LED (LED-mix). The results showed that LED-mix, with a higher percentage of red and blue light, substantially promoted seedling growth compared to other treatments by increasing stem diameter, biomass, specific leaf weight, and root to shoot ratio. The LED-mix also promoted accumulation of soluble sugar, starch, and chlorophyll in the tissue and increased contents of total phenols and flavonoids. Moreover, stomata density and pore area per leaf area under the LED-mix were remarkably greater than those under other treatments. Furthermore, the Western blot analysis revealed that the expression of photosynthetic protein, D1, was notably enhanced by the LED-mix as compared with other light sources. In addition, the LED-mix alleviated the oxidative damage of seedlings by improving enzymatic and nonenzymatic antioxidant systems. Collectively, these results suggest that the LED-mix was the optimal supplementary light source for the production of highest quality A. triphylla seedlings.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Improving photosynthetic efficiency for greater yield.

          Increasing the yield potential of the major food grain crops has contributed very significantly to a rising food supply over the past 50 years, which has until recently more than kept pace with rising global demand. Whereas improved photosynthetic efficiency has played only a minor role in the remarkable increases in productivity achieved in the last half century, further increases in yield potential will rely in large part on improved photosynthesis. Here we examine inefficiencies in photosynthetic energy transduction in crops from light interception to carbohydrate synthesis, and how classical breeding, systems biology, and synthetic biology are providing new opportunities to develop more productive germplasm. Near-term opportunities include improving the display of leaves in crop canopies to avoid light saturation of individual leaves and further investigation of a photorespiratory bypass that has already improved the productivity of model species. Longer-term opportunities include engineering into plants carboxylases that are better adapted to current and forthcoming CO(2) concentrations, and the use of modeling to guide molecular optimization of resource investment among the components of the photosynthetic apparatus, to maximize carbon gain without increasing crop inputs. Collectively, these changes have the potential to more than double the yield potential of our major crops.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants.

            The aromatic amino acids phenylalanine, tyrosine, and tryptophan in plants are not only essential components of protein synthesis, but also serve as precursors for a wide range of secondary metabolites that are important for plant growth as well as for human nutrition and health. The aromatic amino acids are synthesized via the shikimate pathway followed by the branched aromatic amino acids biosynthesis pathway, with chorismate serving as a major intermediate branch point metabolite. Yet, the regulation and coordination of synthesis of these amino acids are still far from being understood. Recent studies on these pathways identified a number of alternative cross-regulated biosynthesis routes with unique evolutionary origins. Although the major route of Phe and Tyr biosynthesis in plants occurs via the intermediate metabolite arogenate, recent studies suggest that plants can also synthesize phenylalanine via the intermediate metabolite phenylpyruvate (PPY), similarly to many microorganisms. Recent studies also identified a number of transcription factors regulating the expression of genes encoding enzymes of the shikimate and aromatic amino acids pathways as well as of multiple secondary metabolites derived from them in Arabidopsis and in other plant species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phototropin blue-light receptors.

              Phototropins are blue-light receptors controlling a range of responses that serve to optimize the photosynthetic efficiency of plants. These include phototropism, light-induced stomatal opening, and chloroplast movements in response to changes in light intensity. Since the isolation of the Arabidopsis PHOT1 gene in 1997, phototropins have been identified in ferns and mosses where their physiological functions appear to be conserved. Arabidopsis contains two phototropins, phot1 and phot2, that exhibit overlapping functions in addition to having unique physiological roles. Phototropins are light-activated serine/threonine protein kinases. Light sensing by the phototropins is mediated by a repeated motif at the N-terminal region of the protein known as the LOV domain. Photoexcitation of the LOV domain results in receptor autophosphorylation and an initiation of phototropin signaling. Here we summarize the photochemical and biochemical events underlying phototropin activation in addition to the current knowledge of the molecular mechanisms associated with photoreceptor signaling.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2019
                7 May 2019
                : 2019
                : 6283989
                Affiliations
                1Division of Applied Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
                2Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
                3Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
                Author notes

                Academic Editor: Maxim Golovkin

                Author information
                http://orcid.org/0000-0002-4146-7278
                Article
                10.1155/2019/6283989
                6530224
                6249e965-bd34-4209-b992-cbc2f71442ef
                Copyright © 2019 Ya Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 January 2019
                : 12 March 2019
                : 21 March 2019
                Funding
                Funded by: Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries
                Award ID: 116057-03
                Categories
                Research Article

                Comments

                Comment on this article