49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders

      review-article
      1 , 1 ,
      Fluids and Barriers of the CNS
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Guanidino compounds (GCs), such as creatine, phosphocreatine, guanidinoacetic acid, creatinine, methylguanidine, guanidinosuccinic acid, γ-guanidinobutyric acid, β-guanidinopropionic acid, guanidinoethane sulfonic acid and α-guanidinoglutaric acid, are present in the mammalian brain. Although creatine and phosphocreatine play important roles in energy homeostasis in the brain, accumulation of GCs may induce epileptic discharges and convulsions. This review focuses on how physiologically important and/or neurotoxic GCs are distributed in the brain under physiological and pathological conditions. Transporters for GCs at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) have emerged as substantial contributors to GCs distribution in the brain. Creatine transporter (CRT/solute carrier (SLC) 6A8) expressed at the BBB regulates creatine concentration in the brain, and represents a major pathway for supply of creatine from the circulating blood to the brain. CRT may be a key factor facilitating blood-to-brain guanidinoacetate transport in patients deficient in S-adenosylmethionine:guanidinoacetate N-methyltransferase, the creatine biosynthetic enzyme, resulting in cerebral accumulation of guanidinoacetate. CRT, taurine transporter (TauT/SLC6A6) and organic cation transporter (OCT3/SLC22A3) expressed at the BCSFB are involved in guanidinoacetic acid or creatinine efflux transport from CSF. Interestingly, BBB efflux transport of GCs, including guanidinoacetate and creatinine, is negligible, though the BBB has a variety of efflux transport systems for synthetic precursors of GCs, such as amino acids and neurotransmitters. Instead, the BCSFB functions as a major cerebral clearance system for GCs. In conclusion, transport of GCs at the BBB and BCSFB appears to be the key determinant of the cerebral levels of GCs, and changes in the transport characteristics may cause the abnormal distribution of GCs in the brain seen in patients with certain neurological disorders.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development.

          The blood-brain barrier (BBB) forms an interface between the circulating blood and the brain and possesses various carrier-mediated transport systems for small molecules to support and protect CNS function. For example, the blood-to-brain influx transport systems supply nutrients, such as glucose and amino acids. Consequently, xenobiotic drugs recognized by influx transporters are expected to have high permeability across the BBB. On the other hand, efflux transporters, including ATP-binding cassette transporters such as P-glycoprotein located at the luminal membrane of endothelial cells, function as clearance systems for metabolites and neurotoxic compounds produced in the brain. Drugs recognized by these transporters are expected to show low BBB permeability and low distribution to the brain. Despite recent progress, the transport mechanisms at the BBB have not been fully clarified yet, especially in humans. However, an understanding of the human BBB transport system is critical, because species differences mean that it can be difficult to extrapolate data obtained in experimental animals during drug development to humans. Recent progress in methodologies is allowing us to address this issue. Positron emission tomography can be used to evaluate the activity of human BBB transport systems in vivo. Proteomic studies may also provide important insights into human BBB function. Construction of a human BBB transporter atlas would be a most important advance from the viewpoint of CNS drug discovery and drug delivery to the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis.

            Mitochondria are particularly vulnerable to oxidative stress, and mitochondrial swelling and vacuolization are among the earliest pathologic features found in two strains of transgenic amyotrophic lateral sclerosis (ALS) mice with SOD1 mutations. Mice with the G93A human SOD1 mutation have altered electron transport enzymes, and expression of the mutant enzyme in vitro results in a loss of mitochondrial membrane potential and elevated cytosolic calcium concentration. Mitochondrial dysfunction may lead to ATP depletion, which may contribute to cell death. If this is true, then buffering intracellular energy levels could exert neuroprotective effects. Creatine kinase and its substrates creatine and phosphocreatine constitute an intricate cellular energy buffering and transport system connecting sites of energy production (mitochondria) with sites of energy consumption, and creatine administration stabilizes the mitochondrial creatine kinase and inhibits opening of the mitochondrial transition pore. We found that oral administration of creatine produced a dose-dependent improvement in motor performance and extended survival in G93A transgenic mice, and it protected mice from loss of both motor neurons and substantia nigra neurons at 120 days of age. Creatine administration protected G93A transgenic mice from increases in biochemical indices of oxidative damage. Therefore, creatine administration may be a new therapeutic strategy for ALS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6.

              The SLC6 family is a diverse set of transporters that mediate solute translocation across cell plasma membranes by coupling solute transport to the cotransport of sodium and chloride down their electrochemical gradients. These transporters probably have 12 transmembrane domains, with cytoplasmic N- and C-terminal tails, and at least some may function as homo-oligomers. Family members include the transporters for the inhibitory neurotransmitters GABA and glycine, the aminergic transmitters norepinephrine, serotonin, and dopamine, the osmolytes betaine and taurine, the amino acid proline, and the metabolic compound creatine. In addition, this family includes a system B(0+) cationic and neutral amino acid transporter, and two transporters for which the solutes are unknown. In general, SLC6 transporters act to regulate the level of extracellular solute concentrations. In the central and the peripheral nervous system, these transporters can regulate signaling among neurons, are the sites of action of various drugs of abuse, and naturally occurring mutations in several of these proteins are associated with a variety of neurological disorders. For example, transgenic animals lacking specific aminergic transporters show profoundly disturbed behavioral phenotypes and probably represent excellent systems for investigating psychiatric disease. SLC6 transporters are also found in many non-neural tissues, including kidney, intestine, and testis, consistent with their diverse physiological roles. Transporters in this family represent attractive therapeutic targets because they are subject to multiple forms of regulation by many different signaling cascades, and because a number of pharmacological agents have been identified that act specifically on these proteins.
                Bookmark

                Author and article information

                Journal
                Fluids Barriers CNS
                Fluids and Barriers of the CNS
                BioMed Central
                2045-8118
                2011
                28 February 2011
                : 8
                : 13
                Affiliations
                [1 ]Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
                Article
                2045-8118-8-13
                10.1186/2045-8118-8-13
                3058069
                21352605
                624d4ff9-b9d5-4de8-b63a-8e5e1bb1d58b
                Copyright ©2011 Tachikawa and Hosoya; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 December 2010
                : 28 February 2011
                Categories
                Review

                Neurology
                Neurology

                Comments

                Comment on this article