11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chlamydia psittaci Triggers the Invasion of H9N2 Avian Influenza Virus by Impairing the Functions of Chicken Macrophages

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Chlamydia psittaci, an obligate, intracellular, Gram-negative bacterium and economically relevant pathogen in poultry and pet bird, could cause psittacosis/ornithosis, and is also a human pathogen causing atypical pneumonia after zoonotic transmission. H9N2 influenza virus, a low pathogenic avian influenza viruses’ subtype, has become endemic in different types of domestic poultry in lots of countries, resulting in great economic loss due to reduced egg production or high mortality associated with coinfection with other pathogens. These two pathogens are easily mixed with other pathogens to aggravate the disease, and often cause mixed infection in clinics. Co-infection of C. psittaci with H9N2 commonly induces severe pneumonia and high mortality in specific pathogen-free (SPF) chickens. According to previous studies, we postulated that C. psittaci infection may beneficial for the replication of H9N2 in HD11. Consequently, in this study, we clarify the pathogenic mechanism of coinfection with C. psittaci and H9N2 in the chicken macrophage cell line HD11, which is the first study of the coinfection of C. psittaci and H9N2 in vitro.

          Abstract

          In a pilot study, simultaneous infection with Chlamydia psittaci ( C. psittaci) and H9N2 virus induced 20% mortality and severe avian airsacculitis, shedding light on animal models of poultry respiratory diseases. However, the pathogenesis is still unclear. In the current study, we hypothesized that C. psittaci infection execrates macrophage function and facilitates H9N2 infection. To explore the potential mechanism, we studied the effect of C. psittaci and H9N2 on the functions of HD11 cells in vitro by simultaneous infection of C. psittaci and H9N2. At the same time, we used infection with C. psittaci or H9N2 alone as the control groups. The results showed that coinfection with C. psittaci and H9N2 could significantly aggravate the mortality of HD11 cells compared to C. psittaci or H9N2 infection alone. In addition, coinfection with C. psittaci and H9N2 did not induce high C. psittaci loads compared to C. psittaci infection alone at 12- and 24-hours post-inoculation (hpi), but coinfection with C. psittaci and H9N2 could increase the loads of H9N2 compared to H9N2 alone in HD11 cells at 12 hpi. More importantly, inducible nitric oxide synthase (iNOS) expression levels, enzyme activity, nitric oxide (NO) production, and phagocytosis were reduced significantly in the group with C. psittaci and H9N2 coinfection compared to those of H9N2 or C. psittaci alone at 24 hpi. Finally, C. psittaci infection induced robust expressions of type Th2 cytokines interleukin (IL)-4 and IL-10, while interferon gamma (IFN-γ) and tumor necrosis factor-α (TNF-α) displayed a significant decrease compared to H9N2 infection alone at 24 hpi. All the above data indicate that C. psittaci infection can facilitate H9N2 invasion and to aggravate severe avian airsacculitis by impairing macrophage functions.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1.

          Interleukin 6 (IL-6) is a cytokine produced by immune and nonimmune cells and exhibits functional pleiotropy and redundancy. IL-6 plays an important role in the differentiation of several cell types. Here, we describe a novel function of IL-6: the negative regulation of CD4+ Th1 cell differentiation. While IL-6-directed CD4+ Th2 differentiation is mediated by IL-4, inhibition of Th1 differentiation by IL-6 is independent of IL-4. IL-6 upregulates suppressor of cytokine signaling 1 (SOCS1) expression in activated CD4+ T cells, thereby interfering with signal transducer and activator of transcription 1 (STAT1) phosphorylation induced by interferon gamma (IFNgamma). Inhibition of IFNgamma receptor-mediated signals by IL-6 prevents autoregulation of IFNgamma gene expression by IFNgamma during CD4+ T cell activation, thereby preventing Th1 differentiation. Thus, IL-6 promotes CD4+ Th2 differentiation and inhibits Th1 differentiation by two independent molecular mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            H9N2 influenza virus in China: a cause of concern

            ABSTRACT The recent human infection with avian influenza virus revealed that H9N2 influenza virus is the gene donor for H7N9 and H10N8 viruses infecting humans. The crucial role of H9N2 viruses at the animal-human interface might be due to the wide host range, adaptation in both poultry and mammalian, and extensive gene reassortment. As the most prevalent subtype of influenza viruses in chickens in China, H9N2 also causes a great economic loss for the poultry industry, even under the long-term vaccination programs. The history, epidemiology, biological characteristics, and molecular determinants of H9N2 influenza virus are reviewed in this paper. The contribution of H9N2 genes, especially RNP genes, to the infection of humans needs to be investigated in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chlamydia psittaci: update on an underestimated zoonotic agent.

              Chlamydia (C.) psittaci is an economically relevant pathogen in poultry and pet birds, where it causes psittacosis/ornithosis, and also a human pathogen causing atypical pneumonia after zoonotic transmission. Despite its well-documented prevalence, the agent has received less attention by researchers than other Chlamydia spp. in the last decades. In the present paper, we review recently published data on C. psittaci infection and attempt to single out characteristic features distinguishing it from related chlamydial agents. It is remarkable that C. psittaci is particularly efficient in disseminating in the host organism causing systemic disease, which occasionally can take a fulminant course. At the cellular level, the pathogen's broad host cell spectrum (from epithelial cells to macrophages), its rapid entry and fast replication, proficient use of intracellular transport routes to mitochondria and the Golgi apparatus, the pronounced physical association of chlamydial inclusions with energy-providing cell compartments, as well as the subversive regulation of host cell survival during productive and persistent states facilitate the characteristic efficient growth and successful host-to-host spread of C. psittaci. At the molecular level, the pathogen was shown to upregulate essential chlamydial genes when facing the host immune response. We hypothesize that this capacity, in concert with expression of specific effectors of the type III secretion system and efficient suppression of selected host defense signals, contributes to successful establishment of the infection in the host. Concerning the immunology of host-pathogen interactions, C. psittaci has been shown to distinguish itself by coping more efficiently than other chlamydiae with pro-inflammatory mediators during early host response, which can, to some extent, explain the effective evasion and adaptation strategies of this bacterium. We conclude that thorough analysis of the large number of whole-genome sequences already available will be essential to identify genetic markers of the species-specific features and trigger more in-depth studies in cellular and animal models to address such vital topics as treatment and vaccination.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                21 April 2020
                April 2020
                : 10
                : 4
                : 722
                Affiliations
                [1 ]College of Life Science and Engineering, Foshan University, Foshan 528000, Guangdong, China; chujcau2016@ 123456tom.com
                [2 ]Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Services, Beijing 100097, China
                [3 ]Key Lab of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; gaoyxcau732@ 123456sohu.com (Y.G.); zhangqcauhp@ 123456sohu.com (Q.Z.); zuozgcau@ 1234562980.com (Z.Z.); liqiang5973@ 123456163.com (Q.L.); wyhairforce@ 123456126.com (Y.W.)
                [4 ]National Reference Lab for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100082, China; xuguanlongw@ 123456163.com
                Author notes
                [* ]Correspondence: hecheng@ 123456cau.edu.cn ; Tel.: +86-010-62733613
                Author information
                https://orcid.org/0000-0002-1223-9639
                Article
                animals-10-00722
                10.3390/ani10040722
                7222846
                32326284
                629a5739-e50c-4f06-aa43-5788e6c6af3f
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 February 2020
                : 17 April 2020
                Categories
                Article

                chlamydia psittaci,avian influenza virus h9n2,coinfection,macrophage functions,avian airsacculitis

                Comments

                Comment on this article