1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Convergence and Divergence of the Signaling Pathways for Insulin and Phosphoinositolglycans

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Caveolin, a protein component of caveolae membrane coats.

          Caveolae have been implicated in the transcytosis of macromolecules across endothelial cells and in the receptor-mediated uptake of 5-methyltetrahydrofolate. Structural studies indicate that caveolae are decorated on their cytoplasmic surface by a unique array of filaments or strands that form striated coatings. To understand how these nonclathrin-coated pits function, we performed structural analysis of the striated coat and searched for the molecular component(s) of the coat material. The coat cannot be removed by washing with high salt; however, exposure of membranes to cholesterol-binding drugs caused invaginated caveolae to flatten and the striated coat to disassemble. Antibodies directed against a 22 kd substrate for v-src tyrosine kinase in virus-transformed chick embryo fibroblasts decorated the filaments, suggesting that this molecule is a component of the coat. We have named the molecule caveolin. Caveolae represent a third type of coated membrane specialization that is involved in molecular transport.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells

            GPI-linked protein molecules become Triton-insoluble during polarized sorting to the apical cell surface of epithelial cells. These insoluble complexes, enriched in cholesterol, glycolipids, and GPI-linked proteins, have been isolated by flotation on sucrose density gradients and are thought to contain the putative GPI-sorting machinery. As the cellular origin and molecular protein components of this complex remain unknown, we have begun to characterize these low-density insoluble complexes isolated from MDCK cells. We find that these complexes, which represent 0.4-0.8% of the plasma membrane, ultrastructurally resemble caveolae and are over 150-fold enriched in a model GPI-anchored protein and caveolin, a caveolar marker protein. However, they exclude many other plasma membrane associated molecules and organelle-specific marker enzymes, suggesting that they represent microdomains of the plasma membrane. In addition to caveolin, these insoluble complexes contain a subset of hydrophobic plasma membrane proteins and cytoplasmically-oriented signaling molecules, including: (a) GTP- binding proteins--both small and heterotrimeric; (b) annex II--an apical calcium-regulated phospholipid binding protein with a demonstrated role in exocytic fusion events; (c) c-Yes--an apically localized member of the Src family of non-receptor type protein- tyrosine kinases; and (d) an unidentified serine-kinase activity. As we demonstrate that caveolin is both a transmembrane molecule and a major phospho-acceptor component of these complexes, we propose that caveolin could function as a transmembrane adaptor molecule that couples luminal GPI-linked proteins with cytoplasmically oriented signaling molecules during GPI-membrane trafficking or GPI-mediated signal transduction events. In addition, our results have implications for understanding v- Src transformation and the actions of cholera and pertussis toxins on hetero-trimeric G proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins.

              Caveolae are plasmalemmal microdomains that are involved in vesicular trafficking and signal transduction. We have sought to identify novel integral membrane proteins of caveolae. Here we describe the identification and molecular cloning of flotillin. By several independent methods, flotillin behaves as a resident integral membrane protein component of caveolae. Furthermore, we have identified epidermal surface antigen both as a flotillin homologue and as a resident caveolar protein. Significantly, flotillin is a marker for the Triton-insoluble, buoyant membrane fraction in brain, where to date mRNA species for known caveolin gene family members have not been detected.
                Bookmark

                Author and article information

                Journal
                Molecular Medicine
                Mol Med
                Springer Nature
                1076-1551
                1528-3658
                May 1998
                May 1 1998
                May 1998
                : 4
                : 5
                : 299-323
                Article
                10.1007/BF03401738
                62a31b2e-a791-413b-b9fd-7995ba0785db
                © 1998

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article